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Abstract

Typical relation extraction models are trained
on a single corpus annotated with a pre-defined
relation schema. An individual corpus is often
small, and the models may often be biased or
overfitted to the corpus. We hypothesize that
we can learn a better representation by com-
bining multiple relation datasets. We attempt
to use a shared encoder to learn the unified fea-
ture representation and to augment it with reg-
ularization by adversarial training. The addi-
tional corpora feeding the encoder can help to
learn a better feature representation layer even
though the relation schemas are different. We
use ACE05 and ERE datasets as our case study
for experiments. The multi-task model obtains
significant improvement on both datasets.

1 Introduction

Relations represent specific semantic relationships
between two entities. For example, there is
Physical.Located relationship between Smith and
Brazil in the sentence: Smith went to a con-
ference in Brazil. Relation extraction is a cru-
cial task for many applications such as knowl-
edge base population. Several relation schemas
and annotated corpora have been developed such
as the Automatic Content Extraction (ACE), and
the Entities, Relations and Events (ERE) anno-
tation (Song et al., 2015). These schemas share
some similarity, but differ in details. A rela-
tion type may exist in one schema but not in an-
other. An example might be annotated as dif-
ferent types in different datasets. For example,
Part-whole.Geographical relations in ACE05 are
annotated as Physcial.Located relations in ERE.
Most of these corpora are relatively small. Models
trained on a single corpus may be biased or over-
fitted towards the corpus.

Despite the difference in relation schemas, we
hypothesize that we can learn a more general rep-

resentation with a unified encoder. Such a repre-
sentation could have better out-of-domain or low-
resource performance. We develop a multi-task
model to learn a representation of relations in a
shared relation encoder. We use separate decoders
to allow different relation schemas. The shared en-
coder accesses more data, learning less overfitted
representation. We then regularize the representa-
tion with adversarial training in order to further en-
force the sharing between different datasets. In our
experiments, we take ACE05 1 and ERE 2 datasets
as a case study. Experimental results show that
the model achieves higher performance on both
datasets.

2 Related Work

Relation extraction is typically reduced to a classi-
fication problem. A supervised machine learning
model is designed and trained on a single dataset
to predict the relation type of pairs of entities. Tra-
ditional methods rely on linguistic or semantic fea-
tures (Zhou et al., 2005; Jing and Zhai, 2007), or
kernels based on syntax or sequences (Bunescu
and Mooney, 2005a,b; Plank and Moschitti, 2013)
to represent sentences of relations. More re-
cently, deep neural nets start to show promising
results. Most rely on convolutional neural nets
(Zeng et al., 2014, 2015; Nguyen and Grishman,
2015, 2016; Fu et al., 2017) or recurrent neural
nets (Zhang et al., 2015; Zhou et al., 2016; Miwa
and Bansal, 2016) to learn the representation of
relations. Our supervised base model will be sim-
ilar to (Zhou et al., 2016). Our initial experiments
did not use syntactic features (Nguyen and Grish-
man, 2016; Fu et al., 2017) that require additional
parsers.

1https://catalog.ldc.upenn.edu/LDC2006T06
2We use 6 LDC releases combined: LDC2015E29,

LDC2015E68, LDC2015E78, LDC2015R26, LDC2016E31,
LDC2016E73
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In order to further improve the representation
learning for relation extraction, Min et al. (2017)
tried to transfer knowledge through bilingual rep-
resentation. They used their multi-task model to
train on the bilingual ACE05 datasets and obtained
improvement when there is less training available
(10%-50%). Our experiments will show our multi-
task model can make significant improvement on
the full training set.

In terms of the regularization to the represen-
tation, Duong et al. (2015) used l2 regularization
between the parameters of the same part of two
models in multi-task learning. Their method is a
kind of soft-parameter sharing, which does not in-
volve sharing any part of the model directly. Fu
et al. (2017) applied domain adversarial networks
(Ganin and Lempitsky, 2015) to relation extrac-
tion and obtained improvement on out-of-domain
evaluation. Inspired by the adversarial training,
we attempt to use it as a regularization tool in our
multi-task model and find some improvement.

3 Supervised Neural Relation Extraction
Model

The supervised neural model on a single dataset
was introduced by Zeng et al. (2014) and fol-
lowed by many others (Nguyen and Grishman,
2015; Zhou et al., 2016; Miwa and Bansal, 2016;
Nguyen and Grishman, 2016; Fu et al., 2017). We
use a similar model as our base model. It takes
word tokens, position of arguments and their en-
tity types as input. Some work (Nguyen and Gr-
ishman, 2016; Fu et al., 2017) used extra syntax
features as input. However, the parsers that pro-
duce syntax features could have errors and vary
depending on the domain of text. The syntax fea-
tures learned could also be too specific for a single
dataset. Thus, we focus on learning representation
from scratch, but also compare the models with
extra features later in the experiments. The en-
coder is a bidirectional RNN with attention and
the decoder is one hidden fully connected layer
followed by a softmax output layer.

In the input layer, we convert word tokens
into word embeddings with pretrained word2vec
(Mikolov et al., 2013). For each token, we con-
vert the distance to the two arguments of the ex-
ample to two position embeddings. We also con-
vert the entity types of the arguments to entity em-
beddings. The setup of word embedding and po-
sition embedding was introduced by Zeng et al.

(2014). The entity embedding (Nguyen and Gr-
ishman, 2016; Fu et al., 2017) is included for argu-
ments that are entities rather than common nouns.
At the end, each token is converted to an embed-
ding wi as the concatenation of these three types
of embeddings, where i ∈ [0, T ), T is the length
of the sentence.

A wide range of encoders have been proposed
for relation extraction. Most of them fall into cat-
egories of CNN (Zeng et al., 2014), RNN (Zhou
et al., 2016) and TreeRNN (Miwa and Bansal,
2016). In this work, we follow Zhou et al. (2016)
to use Bidirectional RNN with attention (BiRNN),
which works well on both of the datasets we are
going to evaluate on. BiRNN reads embeddings
of the words from both directions in the sentence.
It summarizes the contextual information at each
state. The attention mechanism aggregates all the
states of the sentence by paying more attention to
informative words. Given input wi from the input
layer, the encoder is defined as the following:

−→
hi =

−−−→
GRU(wi, hi−1), (1)

←−
hi =

←−−−
GRU(wi, hi−1), (2)

hi = concatenate(
−→
hi ,
←−
hi) (3)

vi = tanh(Wvhi + bv), (4)

αi =
exp(v>i vw)∑
t exp(v

>
t vw))

, (5)

φ(x) =
∑
i

αihi. (6)

We use GRU (Cho et al., 2014) as the RNN cell.
Wv and bv are the weights for the projection vi. vw
is the word context vector, which works as a query
of selecting important words. The importance of
the word is computed as the similarity between vi
and vw. The importance weight is then normal-
ized through a softmax function. Then we obtain
the high level summarization φ(x) for the relation
example.

The decoder uses this high level representa-
tion as features for relation classification. It usu-
ally contains one hidden layer (Zeng et al., 2014;
Nguyen and Grishman, 2016; Fu et al., 2017) and
a softmax output layer. We use the same structure
which can be formalized as the following:

h = ReLU(Whφ(x) + bh), (7)

p = softmax(Woh+ bo), (8)

where Wh and bh are the weights for the hidden
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Figure 1: Multi-task model with regularization

layer, Wo and bo are the weights for the output
layer. We use cross-entropy as the training loss.

4 Learning Unified Representation

While the data for one relation task may be small,
noisy and biased, we can learn a better represen-
tation combining multiple relation tasks. We at-
tempt to use multi-task learning to learn a unified
representation across different relation tasks. The
method is simple and straightforward. We use the
same encoder to learn the unified feature repre-
sentation for both relation tasks, and then we train
classifiers for each task on top of this representa-
tion. We then apply regularization on this repre-
sentation by adversarial training.

4.1 Multi-task Learning
Given example x1 from relation schema 1 and x2
from relation schema 2, we use the same encoder
to obtain representation φ(x1) and φ(x2) respec-
tively. Then we build separate decoders for them
using the same structure (7) (8). To train them at
the same time, we put examples from both tasks in
the same batch. The ratio of the examples are con-
trolled so that the the model reads both datasets
once every epoch. We use linear interpolation to
combine the loss from them.

L = (1− λ)L1 + λL2, (9)

where λ is used to control the attention to each
task. The model may learn the two tasks at differ-
ent speed. During optimization, one task can be
seen as the main task, while the other can be seen
as the auxiliary task. The benefit of joint learning
to the main task may vary depending on how much
attention the model pays to the auxiliary task.

4.2 Regularization by Adversarial Training
Being optimized simultaneously by different de-
coders, the model could still learn very different

representation for similar examples coming from
different tasks. We want to prevent this and to
further push the model to learn similar representa-
tion for similar examples even if they come from
different tasks. We attempt to regularize the rep-
resentation using adversarial training between the
two tasks.

Given the representation φ(x1) and φ(x2)
learned from the two tasks, we build a classifier to
predict which task the examples come from (11).
We add a gradient reversal layer (Ganin and Lem-
pitsky, 2015) at the input of this classifier (10) to
implement the adversarial training.

φ(x) = GRL(φ(x)), (10)

p = softmax(Wφ(x) + b). (11)

While the classifier learns to distinguish the
sources of the input representation, the input rep-
resentation is learned in the opposite direction to
confuse the classifier thanks to GRL. Thus, the
input representation (φ(x1) and φ(x2)) will be
pushed to be close to each other. The gradient re-
versal layer (GRL) is defined as the identity func-
tion for forward propagation (12) and reversed
gradient for back propagation (13).

GRL(x) = x, (12)
dGRL(x)

dx
= −I. (13)

We also use the cross-entropy loss for this ad-
versarial training, and combine the loss Ladv with
the two relation tasks.

L = (1− λ)L1 + λL2 + βLadv, (14)

where we can use β to control how close the rep-
resentations are between the two relation tasks.

5 Experiments

5.1 Datasets

To apply the multi-task learning, we need at least
two datasets. We pick ACE05 and ERE for
our case study. The ACE05 dataset provides a
cross-domain evaluation setting . It contains 6
domains: broadcast conversation (bc), broadcast
news (bn), telephone conversation (cts), newswire
(nw), usenet (un) and weblogs (wl). Previous
work (Gormley et al., 2015; Nguyen and Grish-
man, 2016; Fu et al., 2017) used newswire as train-
ing set (bn & nw), half of bc as the development
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Training Data 100% 50%
ACE05 ERE ACE05 ERE

Method bc wl cts avg test bc wl cts avg test
Supervised 61.44 52.40 52.38 55.40 55.78 56.03 47.81 48.65 50.83 53.60
Pretraining 60.21 53.34 56.10 56.55 56.39 55.39 49.17 52.91 52.49 54.66
Multi-task 61.67 55.03 56.47 57.72 57.29 57.39 51.44 54.28 54.37 55.72
+ Regularization 62.24 55.30 56.27 57.94 57.75 57.73 52.30 54.63 54.89 55.91

Table 1: Multi-task Learning and Regularization.

set, and the other half of bc, cts and wl as the
test sets. We followed their split of documents
and their split of the relation types for asymmet-
ric relations. The ERE dataset has a similar rela-
tion schema to ACE05, but is different in some an-
notation guidelines (Aguilar et al., 2014). It also
has more data than ACE05, which we expect to
be helpful in the multi-task learning. It contains
documents from newswire and discussion forums.
We did not find an existing split of this dataset, so
we randomly split the documents into train (80%),
dev (10%) and test (10%).

5.2 Model Configurations

We use word embedding pre-trained on newswire
with 300 dimensions from word2vec (Mikolov
et al., 2013). We fix the word embeddings dur-
ing the training. We follow Nguyen and Grishman
(2016) to set the position and entity type embed-
ding size to be 50. We use 150 dimensions for the
GRU state, 100 dimensions for the word context
vector and use 300 dimensions for the hidden layer
in the decoders. We train the model using Adam
(Kingma and Ba, 2014) optimizer with learning
rate 0.001. We tune λ linearly from 0 to 1, and
β logarithmically from 5 · 10−1 to 10−4 For all
scores, we run experiments 10 times and take the
average.

5.3 Augmentation between ACE05 and ERE

Training separately on the two corpora (row “Su-
pervised” in Table 1), we obtain results on ACE05
comparable to previous work (Gormley et al.,
2015) with substantially fewer features. With syn-
tactic features as (Nguyen and Grishman, 2016; Fu
et al., 2017) did, it could be further improved. In
this paper, however, we want to focus on represen-
tation learning from scratch first. Our experiments
focus on whether we can improve the representa-
tion with more sources of data.

A common way to do so is pre-training. As a

baseline, we pre-train the encoder of the super-
vised model on ERE and then fine-tune on ACE05,
and vice versa (row “Pretraining” in Table 1). We
observe improvement on both fine-tuned datasets.
This shows the similarity between the encoders of
the two datasets. However, if we fix the encoder
trained from one dataset, and only train the de-
coder on the other dataset, we will actually obtain
a much worse model. This indicates that neither
dataset contains enough data to learn a universal
feature representation layer for classification. This
leaves the possibility to further improve the repre-
sentation by learning a better encoder.

We then attempt to learn a multi-task model us-
ing a shared encoder. We use 14K words as the vo-
cabulary from ACE05 and 20K from ERE. There
are about 8K words shared by the two datasets
(same for both pretrained and multi-task models).
By multi-task learning, we expect the model to
conceive the embeddings for words better and con-
struct more general representation. Experiments
determined that the multi-task learning works best
at λ = 0.8 for both ACE05 and ERE datasets (Ta-
ble 1). It obtains improvement on both the out-of-
domain evaluation on ACE and in-domain evalua-
tion on ERE. It works especially well on weblogs
(wl) and telephone conversation (cts) domains on
ACE, which possibly benefits from the discussion
forum data from ERE.

On the other hand, we use the adversarial train-
ing between the two datasets to further enforce the
representation to be close to each other. There
is strong dependency between the schemas of
these two datasets. Two examples from different
datasets could have the same semantics in terms
of relation type. We try to force the representa-
tion of these examples to be similar. With appro-
priate amount of this regularization (β = 0.001),
the model can be further improved (Table 1). The
amount of improvement is modest compared to
sharing the encoder. This may show that the
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Training Data 100% 50%
Method bc wl cts avg bc wl cts avg
(Nguyen and Grishman, 2016) 63.07 56.47 53.65 57.73 - - - -
Supervised 61.82 55.68 55.15 57.55 56.81 50.49 50.10 52.47
Multi-task 63.59 56.11 56.78 58.83 58.24 52.90 53.09 54.37

Table 2: Multi-task Learning with extra features on ACE05.

multi-task model can already balance representa-
tion with enough labels on both sides. We also
artificially remove half of the training data of each
dataset to see the performance in a relatively low-
resource setting (row “Training Data” Table 1).
We observe larger improvement with both multi-
task learning and regularization. Because of the
decrease of the training data, the best λ is 0.9
for ACE05 and 0.7 for ERE. We also use slightly
stronger regularization (β = 0.01).

5.4 More Features on ACE05

Since ACE05 has been studied for a long time, nu-
merous features have been found to be effective
on this dataset. (Nguyen and Grishman, 2016) in-
corporated some of those features into the neural
net and beat the state-of-art on the dataset. Al-
though representation learning from scratch could
be more general across multiple datasets, we com-
pare the effect of multi-task learning with extra
features on this specific dataset.

We add chunk embedding and on dep path em-
bedding (Nguyen and Grishman, 2016). Similar to
entity type embedding, chunk embedding is cre-
ated according to each token‘s chunk type, we set
the embedding size to 50. On dep path embed-
ding is a vector indicating whether the token is on
the dependency path between the two entities. In
the multi-task model, the shared encoder is a bidi-
rectional RNN (BiRNN) without attention (Equa-
tion (1-3)). These two embeddings will be con-
catenated to the output of the BiRNN to obtain the
new hi and then passed to Equation (4).

As the results (Table 2), our supervised baseline
is slightly worse than the previous state-of-the-art
neural model with extra features, but the multi-
task learning can consistently help. The improve-
ment is more obvious with 50% training data. It is
also worth to note that with 50% training data, the
extra features improve the supervised base model,
but not the multi-task learning model. It shows the
effectiveness of the multi-task model when there
is less training data.

6 Conclusion and Future Work

We attempt to learn unified representation for re-
lations by multi-task learning between ACE05 and
ERE datasets. We use a shared encoder to learn the
unified feature representation and then apply reg-
ularization by adversarial training. The improve-
ment on both datasets shows the promising future
of learning representation for relations in this uni-
fied way. This will require less training data for
new relation schemas. It will be interesting future
work to further explore the multi-task learning be-
tween different datasets, especially to capture the
dependency between different schemas in the de-
coder.
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