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Abstract

Projecting linguistic annotations through word
alignments is one of the most prevalent ap-
proaches to cross-lingual transfer learning.
Conventional wisdom suggests that annotation
projection “just works” regardless of the task
at hand. We carefully consider multi-source
projection for named entity recognition. Our
experiment with 17 languages shows that to
detect named entities in true low-resource lan-
guages, annotation projection may not be the
right way to move forward. On a more posi-
tive note, we also uncover the conditions that
do favor named entity projection from multiple
sources. We argue these are infeasible under
noisy low-resource constraints.

1 Motivation

Annotation projection plays a crucial role in cross-
lingual NLP. For instance, the state of the art ap-
proaches to low-resource part-of-speech tagging
(Das and Petrov, 2011; Täckström et al., 2013)
and dependency parsing (Ma and Xia, 2014; Ra-
sooli and Collins, 2015) all make use of paral-
lel corpora under the source-target language di-
chotomy in some way or another. Beyond syntac-
tic tasks, aligned corpora facilitate cross-lingual
transfer through multilingual embeddings (Ruder
et al., 2017) across diverse tasks.

What about named entity recognition (NER)?
This sequence labeling task with ample source lan-
guages appears like an easy target for projection.
However, as recently argued by Mayhew et al.
(2017), the issue is more complex:

“For NER, the received wisdom is that
parallel projection methods work very
well, although there is no consensus
on the necessary size of the parallel
corpus. Most approaches require mil-
lions of sentences, with a few exceptions

which require thousands. Accordingly,
the drawback to this approach is the dif-
ficulty of finding any parallel data, let
alone millions of sentences. Religious
texts (such as the Bible and the Koran)
exist in a large number of languages, but
the domain is too far removed from typ-
ical target domains (such as newswire)
to be useful. As a simple example, the
Bible contains almost no entities tagged
as organization.”

Our paper is a thorough empirical assessment of
the quoted conjecture for named entity (NE) tag-
ging in true low-resource languages. In specific,
we ask the following questions:
– Are there conditions under which the projection

of named entity labels from multiple sources
yields feasible NE taggers?

– If yes, do these conditions scale down to real
low-resource languages?

To answer these questions, we conduct an exten-
sive study of annotation projection from multiple
sources for low-resource NER. It includes 17 di-
verse languages with heterogeneous datasets, and
2 massive parallel corpora. In terms of cross-
lingual breadth, ours is one of the largest NER ex-
periments to date,1 and the only one that focuses
on standalone annotation projection. We uncover
that the specific conditions that do make NER pro-
jection work are not trivially met at a feasibly large
scale by true low-resource languages.

2 Multilingual projection

We project NE labels from multiple sources into
multiple targets through sentence and word align-

1Cross-lingual NER is typically tested on 4-10 languages,
predominantly the four CoNLL shared task languages (Tjong
Kim Sang, 2002; Tjong Kim Sang and De Meulder, 2003):
Dutch, English, German, and Spanish. We discuss some re-
cent notable exceptions as related work.
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Figure 1: An illustration of named entity projection from two source sentences (Danish, English) to
one target (Croatian). In this example, the voting of entity labels is weighted by tagger confidence and
alignment probability. The outside label (O) is omitted for simplicity.

Algorithm 1: Multi-source label projection
Data: Multilingual sentence graph

G = (Vs ∪ Vt, A); sequential labels L;
source label distributions p(l|vs)

Result: A labeling of target words vt ∈ Vt

1 BALLOT ← empty voting table
2 LABELING ← empty label-to-vertex mapping
3 for vt ∈ Vt do
4 for l ∈ L do
5 BALLOT(l|vt)←

∑
vs∈Vs

p(l|vs) · a(vs, vt)

6 LABELING(vt) = argmax
l

BALLOT(l|vt)

7 return BALLOT, LABELING

ments. Our projection requires source NE taggers
and parallel corpora that are ideally large in both
breadth (across many languages) and depth (num-
ber of parallel sentences). Evidently, we require
that i) the source language texts in the corpus are
tagged for named entities, and that ii) the paral-
lel corpora are aligned. Both conditions are typi-
cally met under some noise: by applying source-
language NE taggers, and unsupervised sentence
and word aligners, respectively.

We view a parallel corpus as a large collection
of multilingual sentences. A multilingual sentence
is a graph G = (V,A) comprising a target sen-
tence t and n source sentences. The vertice sets
V = V0 ∪ · · · ∪ Vn represent words in sen-
tences, where the words vt ∈ V0 belong to the
target sentence V0 = Vt, while all other words
vs ∈ Vi belong to their respective source sentences
Vi, i ∈ {1, ..., n}. The graph is bipartite between

source vertices Vs = V \ Vt and target vertices Vt,
where the edges are word alignments with aligner
confidences a(vs, vt) ∈ (0, 1) as weights. Each
source token vs is associated with a label distribu-
tion p(l|vs) that comes from a respective source-
language tagger and indicates its confidence over
labels l ∈ L. Here, the labels L are NE tags, but
elsewhere they could instantiate other sequence la-
beling such as POS or shallow parses.

Under these assumptions, we implement projec-
tion as weighted voting of source contributions to
target words, such that for each target word vt we
collect votes into a ballot:

BALLOT(l|vt) =
∑
vs∈Vs

p(l|vs) · a(vs, vt).

Here, each source token vs gets to cast a vote for
the future label of vt. Each vote is weighted by its
own tagger confidence and reliability of its align-
ment to target token vt: p(l|vs) · a(vs, vt). The
individual votes are then summed and the tags for
the target tokens are elected. We can train a NE
tagger directly from BALLOT provided some nor-
malization to (0, 1), or we can decode a single ma-
jority tag for each target word:

LABELING(vt) = argmax
l

BALLOT(l|vt).

The process is further detailed as Algorithm 1 and
also depicted in Figure 1 for two source vertice
sets Vi and Vj , and one target set Vt. This sim-
ple procedure was proven to be markedly robust
and effective in massively multilingual transfer of
POS taggers especially for truly low-resource lan-
guages by Agić et al. (2015; 2016).
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CoNLL 2002 (Tjong Kim Sang, 2002) es nl news
CoNLL 2003 (Tjong Kim Sang and De Meulder, 2003) en de news
OntoNotes 5.0 (Weischedel et al., 2011) en ar news
NER FIRE 2013 (Rao and Devi, 2013) ta hi wiki
ANERCorp (Benajiba et al., 2007) ar news
BSNLP 2017 (Piskorski et al., 2017) cs hu pl sk sl news
Estonian NER (Tkachenko et al., 2013) et news
Europeana NER (Neudecker, 2016) fr news
I-CAB (Magnini et al., 2006) it news
HAREM (Santos et al., 2006) pt –
Stockholm Internet Corpus (Östling, 2013) sv blogs

Table 1: The NER datasets in our exepriment. We
indicate the languages2 and domains they cover.

We take into account a set of additional design
choices in multi-source NER projection beyond
what the algorithm itself encodes.

Sentence selection. We compare two ways to
sample the target sentences for training: at ran-
dom vs. through word-alignment coverage rank-
ing. A target word covered if it has an incoming
alignment edge from at least one source word. We
mark the target sentences by percentage of cov-
ered words from each source, and rank them by
mean coverage across sources. We then select the
top k ranked sentences to train a tagger. We opti-
mize this parameter for maximum NER scores on
development data.

Language similarity. Some source languages
arguably help some targets more than others. We
model this relation through language similarity
between source and target WALS feature vec-
tors (Dryer and Haspelmath, 2013): vs and vt. We
implement language similarity as inverse normal-
ized Hamming distance between the two vectors:
1− dh(vs,vt). Only the non-null fields are taken
into account. Similarity is contrasted to random
selection in our experiment.

Tagger performance. Some source NE taggers
perform better than the others monolingually. We
thus consider the option to weigh the source con-
tributions not just by language similarity but also
through their monolingual NER accuracy, so that
the contributions by more accurate source taggers
are selected more often.

3 Experiment setup

Sources and targets. Table 1 shows the NER-
annotated datasets we used. These datasets ad-
here to various differing standards of NE encod-
ing. In a non-trivial effort, we semi-automatically
normalize the data into 3-class CoNLL IO encod-
ing (Tjong Kim Sang and De Meulder, 2003), as

the common denominator for the widely heteroge-
neous datasets. We thus detect names of locations
(LOC), organizations (ORG), and persons (PER).
Languages with more than 5k monolingual train-
ing sentences serve as sources and development
languages for parameter tuning, while the remain-
der pose as low-resource targets; see Table 2. For
languages that have multiple datasets, we concate-
nate the data. We end up with typologically di-
verse sets of sources and targets. We use the pre-
defined train-dev-test splits if available; if not, we
split the data at 70-10-20%.

Parallel text. We contrast two sources of par-
allel data: Europarl (Koehn, 2005) and Watch-
tower (Agić et al., 2016). The former covers
only 21 resource-rich languages but with 400k-2M
parallel sentences for each language pair, while
the latter currently spans over 300 languages,
but with only 10-100k sentences per pair. Eu-
roparl comes with near-perfect sentence align-
ment and tokenization, and we align its words us-
ing IBM2 (Dyer et al., 2013). For Watchtower
we inherit the original noisy preprocessing: sim-
ple whitespace tokenization, automatic sentence
alignment, and IBM1 word alignments by Agić
et al. (2016) as they show that IBM1 in particu-
lar helps debias for low-resource languages.

Tagger. We implement a bi-LSTM NE tagger in-
spired by Lample et al. (2016) and Plank et al.
(2016). We tune it on English development data
at two bi-LSTM layers (d = 300), a final dense
layer (d = 4), 10 training epochs with SGD, and
regular and recurrent dropout at p = 0.5. We
use pretrained fastText embeddings (Bojanowski
et al., 2017). Currently fastText supports 294 lan-
guages and is superior to random initialization in
our tagger. Other than through fastText, we don’t
make explicit use of sub-word embeddings. Our
monolingual F1 score on English is 86.35 under
the more standard IOB2 encoding. We do not aim
to produce a state-of-the-art model, but to con-
trast the scores for various annotation projection
parameters. We use our tagger both to annotate the
source sides of parallel corpora, and to train pro-
jected target language NER models. All reported
NE tagging results are means over 4 runs.

4 Results

Europarl sweet spots. With Europarl we show
that the combination of monolingual F1 source
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(a) Source language ordering (b) Optimal # of sources

(c) Parallel sentence sampling (d) Weights in label voting

Figure 2: Projection tuning on Europarl: a) Order-
ing the sources by their monolingual F1 scores ×
WALS similarity works best; b) At n = 3 sources
the average rank of F1 scores across development
languages is lowest, which indicates that n = 3
is the optimal number of sources in Europarl pro-
jection; c) Parallel sentences are best selected by
mean word alignment coverage, in contrast to tag-
ger confidence or random sampling; d) Weighted
voting for LABELING performs best when weights
are word alignment weights× tagger confidences.
Results under (b), (c), and (d) all use the best
source ordering approach from (a). For random
sampling under (a), the sources were randomly se-
lected 5 times for each n.

scores and WALS similarities is the optimal source
language ordering. The respective optimal num-
ber of sources is n = 3 for Europarl. We show
that the best way to sample parallel sentences is
through mean word alignment coverage, where we
find k = 70000 to roughly be the optimal num-
ber of target sentences. Of the different weighting
schemes in voting, we select the product of word
alignment probability and NER tagger confidence
as best. We visualize these experiments in Fig-
ure 2. Table 2 shows stable performance on Eu-
roparl across the languages, with mean F1 at 60.7
for n = 3 and only +1.53 higher for nmax which
is in fact lower than 3.

Moving to Watchtower. Table 2 shows that
the performance plunges across languages when
Watchtower religious text replaces Europarl, with
a mean F1 of 16.3. There, the gap between n = 3
and mean nmax = 4.82 is much larger: Watch-

Europarl Watchtower

Sources sup. F n=3
1 F nmax

1 nmax F n=3
1 F nmax

1 nmax

Arabic 78.21 – – – 05.50 09.84 5
Dutch 82.26 63.37 63.79 3 12.80 22.02 6

English 91.03 59.96 60.13 2 18.23 21.83 6
Estonian 85.77 63.20 63.82 3 13.14 21.63 7

French 67.98 50.10 50.10 4 10.24 14.12 2
German 80.82 61.44 62.81 2 06.26 09.62 6

Hindi 67.15 – – – 00.00 00.00 1
Hungarian 94.13 58.84 61.11 5 39.85 39.85 4

Italian 80.63 64.71 65.20 3 18.30 25.94 6
Spanish 82.91 63.26 65.67 3 21.02 31.36 7

Targets
Czech – 63.38 69.90 1 20.52 21.98 7
Polish – 71.00 71.86 3 32.42 32.42 4

Portuguese – 59.38 59.38 4 20.99 29.59 7
Slovak – 64.98 64.98 4 – –

Slovene – 66.63 67.86 1 30.14 35.11 6
Swedish – 39.48 44.54 1 02.38 13.02 5

Tamil – – – – 09.04 09.64 3

Means 81.09 60.70 62.23 2.29 16.30 21.12 4.82

Table 2: F1 scores for NER tagging in the exper-
iment languages, shown separately for Europarl
and Watchtower, also for fixed number of source
languages n = 3 and optimal nmax. Full supervi-
sion scores are reported for the source languages.
All scores are given for 3-class IO encoding.

tower needs more sources, and even then the ben-
efits are low, as the +4.82 increase gets us to an
infeasible mean F1 of 21.12. In target sentence
selection we find k = 20000 to be roughly opti-
mal for Watchtower, but we also observe very lit-
tle change in F1 when moving to its full size of
around 120 thousand target sentences.

To put the Watchtower results into perspective,
we implement another simple baseline. Namely,
we train a new monolingual English NER system,
but instead of using monolingual fastText embed-
dings, we create simple cross-lingual embeddings
following Søgaard et al. (2015) over Europarl for
Dutch, German, and Spanish. In effect, the change
to cross-lingual embeddings yields a multilingual
tagger for these four languages. The respective F1

scores of this tagger are low (27-28%), but they
still surpass Watchtower projection.

5 Discussion

We further depict the breakdown of Watchtower
projection in two figures. Figure 3 shows pre-
cision, recall, and F1 learning curves for the
best projection setup on both parallel corpora.
For Europarl, adding more sources always in-
creases recall at the cost of precision: new weaker

2ISO 639-1 language codes were used: https://www.
iso.org/iso-639-language-codes.html.

https://www.iso.org/iso-639-language-codes.html
https://www.iso.org/iso-639-language-codes.html


199

sources increase the noise, but also improve cover-
age. For Watchtower, precision slightly increases
with more sources, but the recall stays very low
throughout, at around 5-12%. The distribution of
labels in the source sides of the two parallel cor-
pora (see Figure 4) clarifies the learning curves is-
sue of Watchtower. Namely, for both corpora the
optimal word alignment coverage cutoff for select-
ing target sentences is around 80% covered words
(best k = 70000 for Europarl, while k = 20000
for Watchtower). However, these cutoffs result
in Europarl projections with nearly two orders of
magnitude more named entities than in Watch-
tower (LOC: 65 times more, ORG: 60, PER: 15),
and with different distributions.

To summarize, our results show that there exists
a setup in which standalone annotation projection
from multiple sources does work for cross-lingual
NER. Europarl is an instance of such setup, with
its large data volume per language, high-quality
preprocessing, and domain rich in named entities.
Arguably, there are no parallel corpora of such vol-
ume and quality that cover a multitude of true low-
resource languages, and we have to do with more
limited resources such as Watchtower. In turn, our
experiment shows that in such setup standalone
projection yields infeasible NE taggers, while it
still may yield workable POS taggers or depen-
dency parsers (cf. Agić et al. 2016).

Alternatives. In search for feasible alternatives,
we conducted a proof-of-concept replication of the
work by Mayhew et al. (2017), who rely on “cheap
translation” of training data from multiple sources
using bilingual lexicons. The replication involved
only one language, Dutch, and we limited the time
investment in the effort. We used three translation
sources: German, English, and Spanish. Together
with instance selection through alignment cover-
age, we reach a top F1 score of 69.35 (with 3-class
IO encoding), which surpasses even our best Eu-
roparl projection for Dutch by 4.56 points.

6 Related work

There is ample work in cross-lingual NER that ex-
ploits cross-lingual representations, comparable or
parallel corpora together with entity dictionaries,
translation, and the like (Täckström et al., 2012;
Kim et al., 2012; Wang et al., 2013; Nothman
et al., 2013; Tsai et al., 2016; Ni and Florian, 2016;
Ni et al., 2017). We highlight a set of contribu-
tions that boast a larger cross-linguistic breadth.

(a) Europarl (b) Watchtower

Figure 3: Cross-lingual NER learning curves for
precision, recall, and F1 in relation to the number
n of source languages in projection. Means for all
experiment languages.

(a) Absolute (b) Relative

Figure 4: Absolute and relative counts for NE la-
bels in Europarl and Watchtower for overlapping
source languages.

Al-Rfou et al. (2015) work with 40 languages
where NE annotations are derived from Wikipedia
and Freebase, while they use a mix of human-
annotated and machine-translated data for evalu-
ation. Similarly, Pan et al. (2017) build and eval-
uate Wikipedia-based models for 282 languages;
out of those, 20 are evaluated for NE linking and
9 for NER on human annotations that are not
from Wikipedia. Cotterell and Duh (2017) jointly
predict NE for high- and low-resource languages
with a character-level neural CRF model. Their
evaluation involves 15 diverse languages across 5
language families. The DARPA LORELEI pro-
gram (Christianson et al., 2018) features chal-
lenges in low-resource NER development for “sur-
prise” languages under time constraints.

7 Conclusions

Our work addresses an important gap in cross-
lingual NER research. In an experiment with 17
languages, we show that while standalone multi-
source annotation projection for NER can work
when resources are rich in both quality and quan-
tity, it is infeasible at a larger scale due to parallel
corpora constraints. For NER in true low-resource
languages, our results suggest it is better to choose
an alternative approach.
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