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Abstract

In this paper we investigate the task of
modeling how long it would take a student
to respond to a tutor question during a tu-
toring dialogue. Solving such a task has
applications in educational settings such
as intelligent tutoring systems, as well
as in platforms that help busy human tu-
tors to keep students engaged. Knowing
how long it would normally take a stu-
dent to respond to different types of ques-
tions could help tutors optimize their own
time while answering multiple dialogues
concurrently, as well as deciding when to
prompt a student again. We study this
problem using data from a service that of-
fers tutor support for math, chemistry and
physics through an instant messaging plat-
form. We create a dataset of 240K ques-
tions. We explore several strong baselines
for this task and compare them with hu-
man performance.

1 Introduction

One-on-one tutoring is often considered the gold-
standard of educational interventions. Past work
suggests that this form of personalized instruction
can increase student performance by two standard
deviation units (Bloom, 1984). Chatbots, intelli-
gent tutoring systems (ITS), and remote tutoring
are often seen as a way of providing this form
of personalized instruction at an economical scale
(VanLehn, 2011). However, their key limitation is
that they are unable to identify when students have
disengaged or are struggling with a task.

Figure 1: Diagram of our binary task definition.
The classifier receives the tutor question text and
dialogue contextual features such as the text and
timing of previous dialogue turns, the duration
and number of words in the question, the entrain-
ment and sentiment between dialogue participants,
among others.

Tutors and ITS need to calibrate how frequently
and often they message their students. Prompt-
ing students too frequently could result in students
feeling frustrated and disrupted, while prompting
too slowly could result in students becoming dis-
engaged or simply not learning as fast they could
have with more prompting. This task is further
complicated by the fact that interactions between
students and a digital platform involve tasks of
varying complexity and duration (such as perform-
ing a calculation, explaining a definition, or an-
swering yes or no).

We propose predicting response latency of a tu-
tor’s question, as an indirect measure of a student’s
engagement (Beck, 2005) and question complex-
ity (Strombergsson et al., 2013).



122

The domain that we work with is tutoring ses-
sion transcripts from an on-demand tutoring com-
pany, in which students take photos of their math,
chemistry, and physics problems with their mobile
or tablet devices. These images are then sent to
a tutor in a remote location. Tutors and students
then communicate back and forth over text mes-
sages until the student is able to solve the problem.

Specifically, the task that we focus on is: given
a question from the tutor, predict whether it can
be responded immediately or it is a question that
requires more thought (see Figure 1). We formu-
late this task as a binary classification problem
(short/long) whose inputs are the tutor’s question
and several dialogue contextual features. In this
paper we make the following contributions:

• We define the task of modeling student re-
sponse latency in order to make one-on-one
tutoring dialogue more efficient.

• We have partnered with an Educational Tech-
nology company called Yup to produce one
of the largest educational dialogue corpora to
date. This initial dataset including over 18K
tutoring sessions spanning 7K hours of text-
based dialogue, including over 240K ques-
tions from tutors.

• We explore several strong classifiers for this
task1 whose performance is statistically sig-
nificant better than expert human perfor-
mance.

2 Related Work

Response time has been used as an indicator
of student engagement (Beck, 2005) and perfor-
mance (Xiong et al., 2011). These studies find that
question response time is correlated with student’s
performance and engagement, and thus being able
to predict a student’s response latency is a use-
ful measure for ITS. However, the task of predict-
ing student response time to open-ended questions
from tutors has not been addressed before. There
is significant work in related topics such as re-
sponse time analysis, dialogue automatic process-
ing, sentiment analysis and education. Our prob-
lem lies within the intersection of these fields, so
now we analyze a cross-section of past work and
propose how their approaches, findings and analy-
ses might be applicable to our situation.

1The source code is available at https://tinyurl.
com/ybe65ctu.

To start with, Graesser and Person (1994) finds
that analyzing question text is beneficial when as-
sessing response characteristics, and this forms the
basis for our bag-of-words baseline model. More-
over, Strombergsson et al. (2013) argue that the
timing of past responses in a dialogue is corre-
lated with the timing of future responses. Based on
this study we propose our second baseline model
trained only on how long it took students to re-
spond to the previous turns in the dialogue.

Given these two baselines we investigate the
following hypotheses, motivated by prior work
from the different areas we mentioned:

H.1 One of the most interesting and counter-
intuitive results in (Avrahami et al., 2008)
is that the longer the message, the faster
it was responded to. This is somewhat at
odds with (Graesser and Person, 1994) which
suggests that short questions elicit short re-
sponses. We plan to test the influence of
question word count on predicting response
time in our dataset.

H.2 We hypothesize that using as a feature the tu-
tor’s turn duration, which is the number of
seconds elapsed between when the tutor first
started talking and the tutor’s question, will
increase model performance (Strombergsson
et al., 2013).

H.3 Moreover, (Avrahami et al., 2008) found
that responsiveness to previous messages was
highly correlated to the responsiveness of the
current message, and therefore, considering
messages prior to a question could prove use-
ful when predicting response latency. We hy-
pothesize that the content and the timing of
dialogue turns that precede the question will
increase the F1 score of our model.

H.4 Brennan (1996) observes that while lexical
variability is high in natural language, it is
relatively low within a single conversation.
When two people talk about the same topic,
they tend to coordinate the words they use.
This phenomenon is known as lexical en-
trainment. Thomason et al. (2013) show that
prosodic entrainment has a positive effect on
tutor-student dialogue rhythm and success.
Nenkova et al. (2008) found that high fre-
quency word entrainment in dialogue is cor-
related with engagement and task success.
We test whether high frequency word entrain-
ment has a significant impact on response

https://tinyurl.com/ybe65ctu
https://tinyurl.com/ybe65ctu
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time prediction.
H.5 Previous work suggests that using sentiment

information can help determine the level of
engagement in MOOC forums (Wen et al.,
2014). Wen et al. mine the sentiment polarity
of the words used in forum posts in order to
monitor students’ trending opinions towards
a course. They observe a correlation between
sentiment ratio measured based on daily fo-
rum posts and number of students who drop
out the course each day. Inspired by this work
we hypothesize that the sentiment polarity of
the words used in the tutor question might
correlate with the student response time.

H.6 Finally, following previous work (Sutskever
et al., 2014) we hypothesize that using se-
quential information (captured through a sim-
ple RNN) will improve the performance of
response time prediction.

In Section 4 we explain how we design different
experiments in order to test these hypotheses. But
first, in the next section we describe our dataset.

3 Data

The dataset we are using consists of more than
7,000 hours of tutorial dialogues between students
and tutors through an app-based tutoring platform.
In total, there are 18,235 tutorial sessions in our
dataset. These sessions are between 6,595 unique
students and 117 tutors discussing mathematics,
physics, and chemistry problems. A session has
61 turns in average, its median length is 34 turns.

TUTOR : I will be your instructor for this ses-
sion. How far have you gotten in solving
the problem? short (15 sec.)

STUDENT : I know b and d are rught
TUTOR : How do you know that? :) Can you

show me your work? Can you show me
your work? long (67 sec.)

STUDENT : Because graphed it and the y in-
tercept was 01. Also it can’t be a y in-
tercept if it’s not 0.

Figure 2: Sample Tutorial Dialogue. Student re-
sponse times follow each tutor question.

Figure 2 is an excerpt of a tutoring session. It
includes examples of two tutor questions and stu-
dent responses, as well as the corresponding re-
sponse time labels. Note that successive utterances

have been concatenated in order to unify speak-
ers that split their points into several lines (some-
times even breaking up an utterance into two or
more lines) and those that include several utter-
ances into the same turn. In this way we model the
dialogue as a turn-based interaction such that two
successive turns correspond to different speakers.
Observe that in the second turn, the tutor utters
three questions in one turn. The first question is
open ended, the second question is a yes/no ques-
tion and then he repeats the second question iden-
tically. In this case, when there is more than one
question in the same turn, we use the timestamp
of the first question. The rationale is that at that
time the student could have started to formulate an
answer. The follow up questions in this turn are re-
finements or repetitions to the first one motivated
by the delay in the response.

The example dialogue in the figure also includes
some typos and grammatical errors which illus-
trate the quality of the data. One of the features
and key takeaways the reader should note is that
there is a great deal of repetition in the types of
questions that tutors ask. In particular, we identi-
fied a large number of duplicate questions that ask
if a student is still engaged and understands a tu-
tor’s previous statement.

The raw data is preprocessed by:

• Sorting rows by session ID and timestamp.
• Removing incomplete rows.
• De-duplicating consecutive rows.
• Normalizing URLs in utterances.
• Tokenizing utterances using spaCy (Honni-

bal and Johnson, 2015).

As part of the project to model response time to
tutor questions, we must first be able to distinguish
them from other forms of conversation in tutorial
dialogues. Past research suggests that humans can
identify questions with high reliability (Graesser
and Person, 1994). Given the size of our dataset,
hand-coding the entire dataset seemed infeasible.
As a proxy, we choose to identify tutor questions
as any utterance which included a “?” character
at the end of a sentence. This is done for three
reasons. First, even if a third-party would con-
test whether or not a sentence is a question, a “?”
symbol denotes a revealed preference on behalf of
the speaker that anticipates a response. Second,
even if a tutor accidentally mistypes the “?” sym-
bol, a student may interpret it as a prompt to re-
spond. Lastly, questions and elicitations may have
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Figure 3: Response Time Histogram

very similar sentence structures but the “?” has a
pedagogically distinct interpretation. Consider the
statements “3 × 5 = 15” versus “3 × 5 = 15?”
The former is an assertion of the fact and the latter
is a form of assessment.

After extracting these candidate questions, we
concatenate any surrounding tutor utterances,
maintaining the original timestamp of the tutor
question. That way if a tutor provides additional
context before or after the question, it will be seen
as part of the question.

Utilizing this rule, we identify a total of 242,495
questions. We then split sessions into train, dev,
and test sets such that the train set comprises ap-
proximately 70% of all questions, the dev set com-
prises 15%, and the test set comprises 15% of
questions, with the number of sessions split anal-
ogously. Figure 3 shows a histogram of student
response times. The vast majority of responses oc-
cur within one minute.

The distribution of questions and response times
appear to follow an approximate power law distri-
bution (Figure 4). The associated R2, proportion
of variance explained, is 0.95, suggesting that this
would be a reasonable approximating distribution.

4 Methodology

In this section, we first describe our approach to
formulating the task as a classification problem,
and the evaluation methodology that we adopt for
measuring performance. Then we delve into the
set-up for our experiments. Finally, we describe
how we collect human performance for the task.

4.1 Classification Methodology
As we already mentioned, given a question from
the tutor, our task is to predict whether the stu-

Figure 4: Log-Log Response Time Plots

dent can respond it right away or she will proba-
bly require more time. We cast this task into a bi-
nary (short/long) classification task whose inputs
are the tutor’s question and several dialogue con-
textual features. Response times are divided in-
tro “short” (20 seconds or less), and “long” (more
than 20 seconds). We use this threshold as it is
the median response latency in our dataset. Using
these thresholds, the classes are roughly divided in
a 49/51 split (short/long).

We use weighted macro F1 scores as our evalu-
ation metric, train on the training set and tune our
model parameters based on dev set results.

We propose three simple baselines for the task.
We assess the performance of a random guess-
ing baseline (guesses based on prior class distri-
butions) and use this as a lower bound.

As an alternative baseline we use the counts of
previous response time labels within session and
train classifiers on this three-dimensional feature
space. We implement two simple classifiers for
our baseline using logistic regression and SVM
(linear kernel) from scikit-learn (Pedregosa
et al., 2011), along with weighted loss functions
to account for class imbalance in the dataset. This
baseline uses only temporal features, no textual
features from the question or the context are used.

For our third baseline, we use only textual fea-
tures from the tutor questions with a simple uni-
gram bag-of-words model for feature representa-
tion, no temporal features are included. We use
the same classifiers as above.

We implement these baselines knowing that
they are too simple to capture the full complexity
of this task. For example, questions such as “Are
you still with me?” occur multiple times across the
entire dataset, with highly varied response times
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that depend on the context and state of the con-
versation. From our train set, approximately 12%
of questions are duplicates and repeated questions
frequently have different response times. As we
argue in sections 5 and 6, it is necessary to look
further into the context combining textual, tempo-
ral, as well as other types of information.

Below we describe how we enrich our best
baseline with further features motivated by the hy-
potheses introduced in Section 2.

4.2 Experimentation

Our approach in testing the above hypotheses
posed in Section 2 is setting forth experimental
augmentations to the baselines introduced above,
and evaluating the weighted F1 scores across all
classes in order to assess performance. In other
words, we add a feature as a time and evaluate
the F1 score, as reported in Table 1. In this sec-
tion, each experiment corresponds to the hypothe-
sis with the same number.

For most of our experiments (excluding the
RNN), we use both logistic regression and SVM
on a bag-of-words model concatenated with re-
spective additional feature(s) (e.g. question word
length, question duration, etc.). For all experi-
ments, we conduct a randomized hyper-parameter
search for each model and pick the model that per-
forms the best on the dev set.

Experiment 1: Question Word Count

Keeping in line with our first hypothesis, we add
question word count as a feature along with the de-
fault bag-of-words features, to test if this improves
the model performance.

Experiment 2: Question Duration

We add the temporal duration of each question as
a feature within our feature space, and use this to
test our second hypothesis.

Experiment 3: Previous Dialogue Turns

Modeling a dialogue as a turn-based interaction
between the ‘student’ and the ‘platform’, we con-
duct two independent experiments enriching the
question text feature space using a turn context
window. The first experiment considers only
the text of the previous turns, using a bag-of-
words model per previous turn (distinguishing
those turns that come from the tutor and those
that come from the student). This is a simple

model with only unigrams used in the bag-of-
words model, we will explore more complex mod-
els in future work. The second experiment consid-
ers only the time in between turns (i.e. the ca-
dence of the dialogue) in addition to the question
text. For each of these experiments, we try differ-
ent window sizes between 1 and 5, and pick the
ones that performed the best.

Experiment 4: Word Entrainment
For word entrainment, we use the top 25/50/100
most frequent tokens across the corpus, as well
as a set of predefined function words. The most
frequent tokens may include punctuation symbols
as well as function words. Previous work has
found that successful dialogue partners align on
exactly such tokens (Nenkova et al., 2008; Thoma-
son et al., 2013). We calculate the occurrence
of each of the relevant words (for the tutor and
the student) over the 10 turns of dialogue prior
to the given question, and compare the distribu-
tions for the tutor and the student. To compare
distributions, we use cosine similarity (which is an
intuitive measure of vector similarity) as well as
Jensen-Shannon divergence, which has been used
in prior work for comparing similarity in the tex-
tual domain (Goldberg et al., 2016).

Experiment 5: Sentiment
To determine question sentiment, we use the senti-
ment tagger from Stanford CoreNLP on the ques-
tion text(Manning et al., 2014). This produces a 5-
class sentiment score, ranging from very negative
to very positive. For multi-sentence questions, we
use the average sentence sentiment.

Experiment 6: Recurrent Neural Networks
Following previous work (Sutskever et al., 2014),
we believe that using sequential information rather
than a bag-of-words model would help improve
performance. To test this, we train the simple
recurrent neural network (RNN) depicted in Fig-
ure 5. As can be seen in the figure, a standard ar-
chitecture was used with no attention mechanism
and there is room for improvement.

The words from the tutor question are tok-
enized using a vocabulary of size 40, 000, padded
to length 128 (99.9th percentile), embedded in
a 300-dimensional vector initialized with pre-
trained fastText vectors (Joulin et al., 2017) and
then fed it into an LSTM with hidden dimension
200. The encoded question is then fed into a
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Figure 5: Diagram of Simple RNN on Question-
Only Dataset.

densely-connected layer with a sigmoid activation
function.

We train this model for a maximum of 20
epochs, optimizing the cross-entropy loss. We
keep the model that performs best on the dev set.
We achieve the best results after 5 epochs. We use
Keras (Chollet et al., 2015) to run our deep learn-
ing experiments.

4.3 Human Ratings

Since this is a novel task, we additionally conduct
an experiment that measures human performance
on this task. This helps contextualize the perfor-
mance of our models, and understand the relative
ease/difficulty of this task for trained human ex-
perts. We assign three human raters to classify tu-
tor questions. All raters are familiar with the tutor-
ing platform and have been teachers in a classroom
environment for several years. We ask the raters to
evaluate under two setups. The first setup provides
the question, the five turns of the dialogue previous
to the question as well as all the turns times. The
second context provides only the tutor’s question
as well as the student’s response. The rationale for
including the student’s response is to understand
how much this task depends on a feature that is not
available in real-time (at the moment of predicting
the response latency, the response is not available
yet).

We give each rater 136 instances of 5-turn win-
dow questions including times (corresponding to
the setup Q+T+L+D+X reported in Table 1) and
150 questions with their answers (Q+A in Ta-
ble 1). Human agreement on this task is low, giv-
ing evidence that this is a difficult task for hu-
mans. In the Q+T+L+D+X experiment, Cohen’s
Kappa is only 0.14. In the question and answer

model, Cohen’s Kappa is substantially higher with
a Kappa of 0.25. Human raters seem to be over-
whelmed by too much contextual information, in
particular in the Q+T+L+D+X setup. It is hard for
people to pick up on the full range of predictive
cues, some of which involve subtle behavioral pat-
terns as we argue in the Section 6. Another pos-
sibility is that tutors used an availability heuris-
tic in their prediction, low agreement may reflect
the fact that tutors’ predictions may be overly bi-
ased by their recent tutoring sessions (Kahneman
and Tversky, 1973). Humans are not good at esti-
mating time and unable to generalize beyond their
own experience, computers can outperform them
as we argue in the next section.

5 Results

We report best F1 scores on the dev and test sets in
Table 1. We organized the table in 4 parts. In this
section we first give an overview of the results de-
scribing the rationale for their presentation in four
parts, then we describe the results with respect to
the hypotheses posed.

5.1 Overview and rationale

The first part of the table includes three simple
baselines: a random prediction, an SVM trained
using only the count of the labels of the previous
questions in the dialogue, and an SVM trained us-
ing only the unigrams of the question text.

The second part describes our exploration of
the feature space motivated by our hypotheses us-
ing SVM and logistic regression. See the table
caption for an explanation of the acronyms used
in the table. All tests that compares automatic
models are paired t-tests because they are on the
same datasets. All tests that compare human vs
model are unpaired t-tests because the human eval-
uation was performed on a random subset of the
dataset. The difference between the best perform-
ing model in this part (in boldface in the table) and
the best baseline is statistically significant (.60 vs
.62, paired t-test, p=0.05). Also the difference be-
tween the best model and the best human perfor-
mance using these features is statistically signifi-
cant (.62 vs .55, unpaired t-test, p=0.05).

In the third part, we add the question answer
(A) as a single feature over the best performing
baseline. Again the difference with the ques-

2Window size of 5 gave the best results.
3Window size of 5 gave the best results.
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Model
F1

Dev Test
Baselines
Random Classifier 0.50 0.50
Prev. Response Label Counts 0.58 0.57
Question Text (Q) 0.60 0.60
Feature exploration with SVM/LR
Q + Question Length (L) 0.61 0.61
Q + Question Duration (D) 0.61 0.61
Q + Prev. Turns Texts2 (X) 0.61 0.60
Q + Prev. Turns Times3 (T) 0.62 0.61
Q + Word Entrainment (E) 0.60 0.60
Q + Question Sentiment (S) 0.60 0.60
Q+T+L+D+X 0.63 0.62
Human 1 with Q+T+L+D+X – 0.50
Human 2 with Q+T+L+D+X – 0.43
Human 3 with Q+T+L+D+X – 0.55
Answer addition with SVM/LR
Q + Answer (A) 0.67 0.67
Human 1 with Q+A – 0.53
Human 2 with Q+A – 0.63
Human 3 with Q+A – 0.62
Baseline Neural Model
RNN with Question Text (Q) 0.62 0.62

Table 1: Results comparing simple baselines, fea-
ture exploration using Logistic Regression/SVM,
human performance, and a baseline using an RNN.
L: Question length in number of words. D: Ques-
tion duration in seconds (a question may span
more than one turn). X: The text of the dialogue
turns preceding the question. T: The timestamp
of the dialogue turns preceding the question. E:
Word entrainment between tutor and student. S:
Sentiment analysis on the question.

tion only baseline is statistically significant (.60
vs .67). Furthermore, the difference with the
Q+T+L+D+X is statistically significant (.62 vs
.67), showing that the answer is useful for this
task as argued in the error analysis. As in the ear-
lier part, the difference between this model and the
best human performance (for these features) is sta-
tistically significant (.63 vs .67).

In the fourth part, we include the results with
RNN and compare it with the best baseline which
uses the same features: the question text baseline.
Also here the difference between the two is statis-
tically significant (.60 vs .62).

We find that for both SVM and logistic regres-

sion classifiers the best performance is obtained
with L2 penalties. For the SVM, squared hinge
loss is found to work better than hinge loss. We
find no significant difference in performance be-
tween SVM and logistic regression on this dataset.

5.2 Hypotheses analysis

Below we analyze what these results mean for our
hypotheses.

Experiment 1: Question Word Count
Adding question length as a feature improves per-
formance, validating H.1. Furthermore, longer
questions (which usually involve a lot of technical
information in the form of formulae/equations, or
are an aggregation of repeated questions) tend to
result in higher response times. This is contrary to
results seen in (Avrahami et al., 2008), but in line
with those seen in (Beck, 2005). These results po-
tentially indicate behavioral differences between
the two domains - instant messaging (Avrahami
et al., 2008), and tutorial dialogue in virtual envi-
ronments (Beck, 2005); the latter also being the
domain of our current work.

Experiment 2: Question Duration
We notice similar trends while analyzing ques-
tion duration as a feature. Using question du-
ration along with bag-of-words features helped
boost model performance, verifying H.2. Intu-
itively, this feature seems to be an indicative mea-
sure of question complexity, and longer duration
questions result in higher response times.

Experiment 3: Previous Dialogue Turns
H.3 is a mixed bag. We start off by adding dif-
ferent spans of previous dialogue turn text. This
helps improve performance on the dev set but does
not add anything over the baseline when evaluated
on the test set, suggesting that these features do
not generalize well across conversations. On the
contrary, adding previous dialogue times helps im-
prove model performance in both the dev and test
sets. In both settings, we find the best results while
using 5 turns of previous dialogue.

Experiment 4: Word Entrainment
Word entrainment seems to have no effect on
model performance. There are no significant dif-
ferences based on the set of words used to measure
entrainment (function words or 25/50/100 most
frequent words), as well as the metric of lexical
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distance (Jensen-Shannon divergence/cosine simi-
larity). Therefore, we cannot confirm the validity
of H.4 in our setting.

Experiment 5: Sentiment
A similar narrative is observed with sentiment
(H.5). We note that sentiment analysis is less ac-
curate when sentences get longer, and this might
be one of the causes for the relative ineffectiveness
of sentiment as a feature. Another possible inter-
pretation is that this text is not aligned well with
traditional definitions of sentiment. Many terms
in mathematics are neutral but are classified with
negative sentiment on a high valence. In future
work we plan to explore the use of sentiment anal-
ysis on student generated text rather than on tutor
questions.

Experiment 6: Recurrent Neural Networks
The results of using deep learning models (RNN)
are promising (H.6). The RNN achieves a perfor-
mance which is statistically significant better than
the baseline with the same feature: only the ques-
tion text. A probable reason is that the baseline
uses unigrams, hence it loses the order among the
words of the question while the RNN model might
benefit from this information. It must be noted that
we have not performed extensive hyperparame-
ter tuning, performance might be further improved
with more hyperparameter tuning.

6 Analysis

In spite of the fact that the results presented in the
previous section are above human performance,
we believe that the automatic performance for this
task can outperform humans even more. Therefore
we perform a detailed qualitative error analysis in
this section.

We focus this section on error analysis of
one of the best performing models which
does not include information about the answer:
Q+T+L+D+X. We do not include the answer in
this analysis in order to understand why this fea-
ture alone makes a significant difference. Also, the
answer information would not be available to the
model in an application trying to predict student
response latency in real time.

There are two kinds of errors for our task. One
kind corresponds to the case in which the model
overestimates how long it will take the student to
respond, and the other to cases in which the model
underestimates the latency of the response. We

perform a manual error analysis over both types
of errors, we describe our findings below.

6.1 Overestimation errors

First, we find that the model overestimates the re-
sponse time to tutor questions that exhibit some
positive politeness strategy (Brown and Levinson,
1987). In many of the overestimated instances
analyzed the tutor uses lexical in-group markers.
These can include altering the forms of address
and using in-group language. For instance, the
use of “we" instead of “you", as in the example
below, is a kind of in-group marker. Other kinds
of in-group language include the use of dialects,
jargon or slang, and linguistic contractions. The
following is an example of a linguistic contrac-
tion, an inclusive pronoun and a smiley, all signs
of positive politeness. The label predicted by the
model for this example is long and the actual la-
tency is short: “I’ll show you how we can find the
other angle of this square :). Is this diagram from
your textbook?”. Also, the following positive po-
liteness strategies are found in overestimated in-
stances. A speaker may seek to avoid disagree-
ment by employing a token of agreement or appre-
ciation, or a confirmation question such as in the
example “Awesome! We can use a number line to
solve the problem. Was that clear?.”

Second, the model also overestimates the re-
sponse time to tutor questions that include some
negative politeness strategy. Whereas positive po-
liteness enhances the hearer’s positive self-image
via social appreciation, negative politeness ad-
dresses the hearer’s need for freedom from impo-
sition. A useful strategy here is the use of hedges.
A hedge is a softening of a statement, induced
by employing less-than-certain phrasing such as
would, might, or should as illustrated in the exam-
ple below. Further efforts to avoid encroaching on
the hearer’s sense of freedom include imperson-
alizing the speaker and hearer. Common strate-
gies here include using passive and circumstantial
voices as in the following example “It would be
best to clarify that the math operation that should
be applied to solve this problem is addition. Does
that make sense?.”

Third, the model overestimates also when the
student turn following the tutor question is not ac-
tually a response but a positive acknowledgement
(e.g., “Ok, let me see”) or a clarification request
(e.g., “the variable is the value?”).
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6.2 Underestimation errors
First, we find that the model frequently underes-
timates the time required for the student response,
i.e. the answer is slower than predicted when there
is some sort of face threatening act (Brown and
Levinson, 1987) that the tutor or student is do-
ing, either by disagreeing (for instance, with the
words no, nope, not really) or by some inappropri-
ate behavior. For example: “Question: Do these
questions belong to a graded test or quiz?" An-
swer: “it a quiz, just making sure I’m on the right
path." Consistently, face preserving words such as
“sorry" are also sometimes present in questions
form the tutor that take longer to respond than pre-
dicted.

Second, the model also underestimates the re-
sponse latency of questions that the student avoids
answering such as “Um I’m not sure” and “Can u
just help me pls I’m in a rush” and “Just give me
the answer.”

Third, indirect speech acts such as “Do you spot
one more solution that does not lie in the domain?”
which syntactically require a yes/no answer but
pragmatically implicate a request for action, are
also underestimated.

Finally, there are also whole sessions where the
model underestimates the response time for every
question. This may be an indicator than some stu-
dents are just slower to respond.

In conclusion, the feature space could be
improved modeling different politeness strate-
gies (Danescu et al., 2013; Benotti and Black-
burn, 2016), including features about whether the
most probable response for this kind of question
is an answer, an acknowledgement or a clarifica-
tion request (Benotti and Blackburn, 2017; Rao
and Daume, 2018) as well as features about in-
direct speech acts and implicatures (Benotti and
Traum, 2009; Jeong et al., 2009). These three
areas are challenging aspects of natural language
understanding and interaction modeling but there
is encouraging work being done in each of them
which we plan to take as starting points to pursue
this interesting task further.

7 Conclusion & Future Work

To summarize, this experimental paper comprises
several tasks. First, we introduce a new dataset of
tutorial dialogue in a mobile tutoring environment
with automatically annotated tutor questions and
student responses. Secondly, we formally define

the task of predicting student response times to tu-
tor questions. Knowing whether a student can re-
spond a given question immediately or it normally
requires more thought, would help tutors optimize
their own time as well as prompt the student at the
right moment. Thirdly, we develop a set of models
and explore our hypotheses related to hand-built
feature functions and model classes by making ex-
perimental augmentations to the baselines. Lastly,
we evaluate the performance of trained human ex-
perts on the same problem. We conclude that this
is a difficult task, even for human beings; while
these models are able to outperform humans, fur-
ther research is required.

We plan to experiment with situational meta-
data such as tutor and student identity and gen-
der, subject of study and nature of payment system
(free trial, pay per minute, pay per month usage).
A promising direction for further work is model-
ing the politeness strategies as well as the other
features mentioned in our error analysis. We be-
lieve that this enriched feature space can result in a
model that outperforms human experts even more.
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