
Proceedings of the 2018 EMNLP Workshop W-NUT: The 4th Workshop on Noisy User-generated Text, pages 116–120
Brussels, Belgium, Nov 1, 2018. c©2018 Association for Computational Linguistics

116

Language Identification in Code-Mixed Data using Multichannel Neural
Networks and Context Capture

Soumil Mandal
Department of CSE

SRM University, Chennai, India
soumil.mandal@gmail.com

Anil Kumar Singh
Department of CSE

IIT (BHU), Varanasi, India
aksingh.cse@iitbhu.ac.in

Abstract
An accurate language identification tool is an
absolute necessity for building complex NLP
systems to be used on code-mixed data. Lot of
work has been recently done on the same, but
there’s still room for improvement. Inspired
from the recent advancements in neural net-
work architectures for computer vision tasks,
we have implemented multichannel neural net-
works combining CNN and LSTM for word
level language identification of code-mixed
data. Combining this with a Bi-LSTM-CRF
context capture module, accuracies of 93.28%
and 93.32% is achieved on our two testing sets.

1 Introduction

With the rise of social media, the amount of mine-
able data is rising rapidly. Countries where bilin-
gualism is popular, we see users often switch back
and forth between two languages while typing,
a phenomenon known as code-mixing or code-
switching. For analyzing such data, language tag-
ging acts as a preliminary step and its accuracy
and performance can impact the system results to
a great extent. Though a lot of work has been done
recently targeting this task, the problem of lan-
guage tagging in code-mixed scenario is still far
from being solved. Code-mixing scenarios where
one of the languages have been typed in its translit-
erated from possesses even more challenges, espe-
cially due to inconsistent phonetic typing. On such
type of data, context capture is extremely hard as
well. Proper context capture can help in solving
problems like ambiguity, that is word forms which
are common to both the languages, but for which,
the correct tag can be easily understood by know-
ing the context. An additional issue is a lack of
available code-mixed data. Since most of the tasks
require supervised models, the bottleneck of data
crisis affects the performance quite a lot, mostly
due to the problem of over-fitting.

In this article, we present a novel architecture,
which captures information at both word level
and context level to output the final tag. For
word level, we have used a multichannel neural
network (MNN) inspired from the recent works
of computer vision. Such networks have also
shown promising results in NLP tasks like sen-
tence classification (Kim, 2014). For context cap-
ture, we used Bi-LSTM-CRF. The context module
was tested more rigorously as in quite a few of the
previous work, this information has been sidelined
or ignored. We have experimented on Bengali-
English (Bn-En) and Hindi-English (Hi-En) code-
mixed data. Hindi and Bengali are the two most
popular languages in India. Since none of them
have Roman as their native script, both are writ-
ten in their phonetically transliterated from when
code-mixed with English.

2 Related Work

In the recent past, a lot of work has been done
in the field of code-mixing data, especially lan-
guage tagging. King and Abney (2013) used
weakly semi-supervised methods for building a
world level language identifier. Linear chain CRFs
with context information limited to bigrams was
employed by Nguyen and Doğruöz (2013). Lo-
gistic regression along with a module which gives
code-switching probability was used by Vyas et al.
(2014). Multiple features like word context, dic-
tionary, n-gram, edit distance were used by Das
and Gambäck (2014). Jhamtani et al. (2014) com-
bined two classifiers into an ensemble model for
Hindi-English code-mixed LID. The first classifier
used modified edit distance, word frequency and
character n-grams as features. The second classi-
fier used the output of the first classifier for the cur-
rent word, along with language tag and POS tag of
neighboring to give the final tag. Piergallini et al.



117

(2016) made a word level model taking char n-
grams and capitalization as feature. Rijhwani et al.
(2017) presented a generalized language tagger for
arbitrary large set of languages which is fully un-
supervised. Choudhury et al. (2017) used a model
which concatenated word embeddings and charac-
ter embeddings to predict the target language tag.
Mandal et al. (2018a) used character embeddings
along with phonetic embeddings to build an en-
semble model for language tagging.

3 Data Sets

We wanted to test our approach on two different
language pairs, which were Bengali-English (Bn-
En) and Hindi-English (Hi-En). For Bn-En, we
used the data prepared in Mandal et al. (2018b)
and for Hi-En, we used the data prepared in Patra
et al. (2018). The number of instances of each type
we selected for our experiments was 6000. The
data distribution for each type is shown in Table 1.

Train Dev Test

Bn
3000

27245/6189
22.4

1000
9144/2836

21.4

2000
17967/4624

22.5

Hi
3000

26384/5630
18.8

1000
8675/2485

18.7

2000
16114/4286

18.2

Table 1: Data distribution.

Here, the first value represents the number of in-
stances taken, the second line represents the to-
tal number of indic tokens / unique number of in-
dic tokens, and the third line represents the mean
code-mixing index (Das and Gambäck, 2014).

4 Architecture Overview

Our system is comprised of two supervised mod-
ules. The first one is a multichannel neural net-
work trained at word level, while the second one
is a simple bidirectional LSTM-CRF trained at in-
stance level. The second module takes the input
from the first module along with some other fea-
tures to output the final tag. Individual modules
are described in detail below.

Figure 1: Architecture overview.

5 Word - Multichannel Neural Network

Inspired from the recent deep neural architectures
developed for image classification tasks, espe-
cially the Inception architecture (Szegedy et al.,
2015), we decided to use a very similar concept for
learning language at word level. This is because
the architecture allows the network to capture rep-
resentations of different types, which can be really
helpful for NLP tasks like these as well. The net-
work we developed has 4 channels, the first three
enters into a Convolution 1D (Conv1D) network
(LeCun et al., 1999), while the fourth one enters
into a Long Short Term Memory (LSTM) network
(Hochreiter and Schmidhuber, 1997). The com-
plete architecture is showed in Fig 2.

Figure 2: Multichannel architecture for word level
tagging.

Character embeddings of length 15 is fed into all
the 4 channels. The first 3 Conv 1D cells are used
to capture n-gram representations. All the three
Conv 1D cells are followed by Dropout (rate 0.2)
and Max Pooling cells. Adding these cells help in
controlling overfitting and learning invariances, as
well as reduce computation cost. Activation func-
tion for all the three Conv 1D nets was relu. The
fourth channel goes to an LSTM stack with two
computational layers of sizes 15, and 25 orderly.
For all the four channels, the final outputs are flat-
tened and concatenated. This concatenated vector
is then passed on to two dense layers of sizes 15



118

(activation relu) and 1 (activation sigmoid). For
the two models created, Bn-En and Hi-En, target
labels were 0 for the Bn/Hi and 1 for En. For im-
plementing the multichannel neural network for
word level classification, we used the Keras API
(Chollet et al., 2015).

5.1 Training

Word distribution for training is described in Ta-
ble 1. All indic tagged tokens were used in-
stead of just unique ones of respective languages.
The whole model was compiled using loss as
binary cross-entropy, optimization function used
was adam (Kingma and Ba, 2014) and metric for
training was accuracy. The batch size was set to
64, and number of epochs was set to 30. Other pa-
rameters were kept at default. The training accu-
racy and loss graphs for both Bn and Hi are shown
below. As the MNN model produces a sigmoid
output, to convert the model into a classifier, we
decided to use a threshold based technique iden-
tical to the one used in Mandal et al. (2018a) for
tuning character and phonetic models. For this the
development data was used, threshold for Bn was
calculated to be θ ≤ 0.95, while threshold for Hi
was calculated to be θ ≤ 0.89. Using these, the ac-
curacies on the development data was 93.6% and
92.87% for Bn and Hi respectively.

6 Context - Bi-LSTM-CRF

The purpose of this module is to learn representa-
tion at instance level, i.e. capture context. For this,
we decided to use bidirectional LSTM network
with CRF layer (Bi-LSTM-CRF) (Huang et al.,
2015) as it has given state of the art results for se-
quence tagging in the recent past. For converting
the instances into embeddings, two features were
used namely, sigmoid output from MNN (fe1),
character embedding (fe2) of size 30. The final
feature vector is created by concatenating these
two, fe = (fe1, fe2). The model essentially learns
code-switching chances or probability taking into
consideration character embeddings and sigmoid
scores of language tag. We used the open sourced
neural sequence labeling toolkit, NCRF++ (Yang
and Zhang, 2018) for building the model.

6.1 Training

Instance distribution for training is described in
Table 1. The targets here were the actual language
labels (0 for the Bn/Hi and 1 for En). The hyper-

parameters which we set mostly follow Yang et al.
(2018) and Ma and Hovy (2016). Both the mod-
els (Bn-En & Hi-En) had identical parameters. L2
regularization λ was set at 1e-8. Learning rate
η was set to 0.015. Batch size was kept at 16
and number of epochs was set to 210. Mini-batch
stochastic gradient descent (SGD) with decaying
learning rate (0.05) was used to update the param-
eters. All the other parameters were kept at default
values. This setting was finalized post multiple ex-
periments on the development data. Final accu-
racy scores on the development data was 93.91%
and 93.11% for Bn and Hi respectively.

7 Evaluation

For comparison purposes, we decided to use the
character encoding architecture described in Man-
dal et al. (2018a) (stacked LSTMs of sizes 15, 35,
25, 1) with identical hyper-parameters for both Bn
and Hi. Training data distribution while creating
the baseline models were in accordance with Ta-
ble 1. The thresholds for the baseline models cal-
culated on the development data was found to be
θ ≤ 0.91 and θ ≤ 0.90 for Bn and Hi respectively.
The results (in %) for each of the language pairs
are shown below.

Acc Prec Rec F1
baseline 88.32 89.64 87.72 88.67
word model 92.87 94.33 91.84 93.06
context model 93.28 94.33 92.68 93.49

Table 2: Evaluation on Bn.

From Table 2 we can see that the jump in accu-
racy from baseline to the word model is quite sig-
nificant (4.55%). From word to context model,
though not much, but still an improvement is seen
(0.41%).

Acc Prec Rec F1
baseline 88.28 88.57 88.01 88.28
word model 92.65 93.54 91.77 92.64
context model 93.32 93.62 93.03 93.32

Table 3: Evaluation on Hi.

In Table 3, again a similar pattern can be seen, i.e.
a significant improvement (4.37%) from baseline
to word model. Using the context model, accuracy
increases by 0.67%. In both the Tables, we see that
precision has been much higher than recall.



119

8 Analysis & Discussion

The confusion matrices of the language tagging
models are shown in Table 4 and Table 5 for Bn
and Hi respectively. Predicted class is denoted by
Italics, while Roman shows the True classes.

Confusion Matrices
1 Bn En 2 Bn En

Bn 16502 1465 Bn 16652 1315
En 991 15521 En 1000 15512

Table 4: Confusion matrices for Bn.

From Table 4 (1 - word model, 2 - context model),
we can see that the correctly predicted En tokens
has not varied much, but in case of Bn, the change
is quite substantial, and the accuracy improve-
ment from word to context model is contributed
by this. Upon analyzing the tokens which were
correctly classified by context model, but misclas-
sified by word model, we see that most of them are
rarely used Bn words, e.g. shaaotali (tribal), lut-
pat (looted), golap (rose), etc, or words with close
phonetic similarity with an En word(s) or with
long substrings which belong to the En vocabu-
lary, e.g. chata (umbrella), botol (bottle), gramin
(rural), etc. For some instances, we do see that am-
biguous words have been correctly tagged by the
context model unlike the word model, where the
same language tag is given.

E.g 1. Amar\bn shob\bn rokom\bn er\bn e\bn
fruit\en like\en aam\bn, jam\bn, kathal\bn
bhalo\bn lage\bn. (Trans. I like all kinds of fruits
like aam, jam, kathal.)

E.g 2. Sath\bn shokale\bn eto\bn jam\en
eriye\bn office\en jawa\bn is\en a\en big\en
headache\en amar\bn boyeshe\bn. (Trans. Early
morning commuting through traffic for office is a
big headache at my age.)

In the first example, the word ”jam” is a Bengali
word meaning rose apple (a type of tropical fruit),
while in the second example, the word ”jam” is
an English word referring to traffic jam i.e. traffic
congestion. Thus, we can see that despite having
same spellings, the word has been classified to dif-
ferent languages, and that too correctly. This case
was observed in 47 instances, while for 1 instance,
it tagged the ambiguous word incorrectly. Thus we
see that when carefully trained on standard well
annotated data, the positive impact is much higher
than negative.

In Table 5 (3 - word model, 4 - context model) we
can see substantial improvement in prediction of
En tokens as well by the context model, though
primary reason for accuracy improvement is due
to better prediction of Hi tokens.

Confusion Matrices
3 Hi En 4 Hi En
Hi 14788 1326 Hi 14992 1122
En 1034 14968 En 1021 14981

Table 5: Confusion matrices for Hi.

Here again, on analyzing the correct predictions
by the context model but misclassified by the word
model, we see a similar pattern of rarely used Hi
words, e.g. pasina (sweat), gubare (balloon), or
Hi words which have phonetic similarities with En
words, e.g. tabla (a musical instrument), jangal
(jungle), pajama (pyjama), etc. In the last two
cases, we can see that the words are actually bor-
rowed words. Some ambiguous words were cor-
rectly tagged here as well.

E.g 3. First\en let\en me\en check\en fir\hi
age\hi tu\hi deklena\hi. (Trans. First let me
check then later you takeover.)

E.g 4. Anjan\hi woman\en se\hi age\en
puchna\hi is\en wrong\en. (Trans. Asking age
from an unknown woman is wrong.)

In the first example, ”age” is a Hindi word mean-
ing ahead, while in the next instance, ”age” is an
English word meaning time that a person has lived.
Here, correct prediction for ambiguous words was
seen in 39 instances while there was no wrong pre-
dictions.

9 Conclusion & Future Work

In this article, we have presented a novel archi-
tecture for language tagging of code-mixed data
which captures context information. Our system
achieved an accuracy of 93.28% on Bn data and
93.32% on Hi data. The multichannel neural net-
work alone got quite impressive scores of 92.87%
and 92.65% on Bn and Hi data respectively. In
future, we would like to incorporate borrowed
(Hoffer (2002), Haspelmath (2009)) tag and col-
lect even more code-mixed data for building bet-
ter models. We would also like to experiment with
variants of the architecture shown in Fig 1 on other
NLP tasks like text classification, named entity
recognition, etc.



120

References
François Chollet et al. 2015. Keras. https://
keras.io.

Monojit Choudhury, Kalika Bali, Sunayana Sitaram,
and Ashutosh Baheti. 2017. Curriculum design for
code-switching: Experiments with language iden-
tification and language modeling with deep neu-
ral networks. In Proceedings of the 14th Interna-
tional Conference on Natural Language Process-
ing (ICON-2017), pages 65–74, Kolkata, India. NLP
Association of India.

Amitava Das and Björn Gambäck. 2014. Identifying
languages at the word level in code-mixed indian so-
cial media text.

Martin Haspelmath. 2009. Lexical borrowing: Con-
cepts and issues. Loanwords in the world’s lan-
guages: A comparative handbook, pages 35–54.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Bates L Hoffer. 2002. Language borrowing and lan-
guage diffusion: An overview. Intercultural com-
munication studies, 11(4):1–37.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Harsh Jhamtani, Suleep Kumar Bhogi, and Vaskar Ray-
choudhury. 2014. Word-level language identifica-
tion in bi-lingual code-switched texts. In Proceed-
ings of the 28th Pacific Asia Conference on Lan-
guage, Information and Computing.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Ben King and Steven Abney. 2013. Labeling the lan-
guages of words in mixed-language documents us-
ing weakly supervised methods. In Proceedings of
the 2013 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1110–1119.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Yann LeCun, Patrick Haffner, Léon Bottou, and
Yoshua Bengio. 1999. Object recognition with
gradient-based learning. In Shape, contour and
grouping in computer vision, pages 319–345.
Springer.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional lstm-cnns-crf.
arXiv preprint arXiv:1603.01354.

Soumil Mandal, Sourya Dipta Das, and Dipankar Das.
2018a. Language identification of bengali-english
code-mixed data using character & phonetic based
lstm models. arXiv preprint arXiv:1803.03859.

Soumil Mandal, Sainik Kumar Mahata, and Dipankar
Das. 2018b. Preparing bengali-english code-mixed
corpus for sentiment analysis of indian languages.
arXiv preprint arXiv:1803.04000.

Dong Nguyen and A Seza Doğruöz. 2013. Word level
language identification in online multilingual com-
munication. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 857–862.

Braja Gopal Patra, Dipankar Das, and Amitava Das.
2018. Sentiment analysis of code-mixed indian
languages: An overview of sail code-mixed shared
task@ icon-2017. arXiv preprint arXiv:1803.06745.

Mario Piergallini, Rouzbeh Shirvani, Gauri S Gautam,
and Mohamed Chouikha. 2016. Word-level lan-
guage identification and predicting codeswitching
points in swahili-english language data. In Proceed-
ings of the Second Workshop on Computational Ap-
proaches to Code Switching, pages 21–29.

Shruti Rijhwani, Royal Sequiera, Monojit Choud-
hury, Kalika Bali, and Chandra Shekhar Maddila.
2017. Estimating code-switching on twitter with
a novel generalized word-level language detection
technique. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 1971–
1982.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, Andrew Rabinovich,
et al. 2015. Going deeper with convolutions. Cvpr.

Yogarshi Vyas, Spandana Gella, Jatin Sharma, Ka-
lika Bali, and Monojit Choudhury. 2014. Pos tag-
ging of english-hindi code-mixed social media con-
tent. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 974–979.

Jie Yang, Shuailong Liang, and Yue Zhang. 2018. De-
sign challenges and misconceptions in neural se-
quence labeling. arXiv preprint arXiv:1806.04470.

Jie Yang and Yue Zhang. 2018. Ncrf++: An open-
source neural sequence labeling toolkit. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics.

https://keras.io
https://keras.io

