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Abstract

We present a novel named entity recogni-
tion (NER) system, and its participation
in the Emerging and Rare Entity Recog-
nition shared task, hosted at the 2017
EMNLP Workshop on Noisy User Gen-
erated Text (W-NUT). With a specialized
evaluation highlighting performance on
rare, and sparsely-occurring named enti-
ties, this task provided an excellent oppor-
tunity to build out a newly-developed sta-
tistical algorithm and benchmark it against
the state-of-the-art. Powered by flexi-
ble context features of word forms, our
system’s capacity for identifying never-
before-seen entities made it well suited for
the task. Since the system was only de-
veloped to recognize a limited number of
named entity types, its performance was
lower overall. However, performance was
competitive on the categories trained, in-
dicating potential for future development.

1 Introduction

NER is a common foundational step for many
pipelines that rely on natural language processing
(NLP). The main goal is the identification of men-
tions of entities (e.g., persons or locations). As
a pre-processing task for unstructured text, NER
may, for example, provide index keywords for in-
formation retrieval systems (Tjong Kim Sang and
De Meulder, 2003), or topic-rich features for ma-
chine learning (ML) applications (Kumaran and
Allan, 2004; Vavliakis et al., 2013). Effective ap-
proaches to NER have long utilized conditional
random fields (Lafferty et al., 2001), support vec-
tor machines (McCallum and Li, 2003), and per-
ceptrons (Settles, 2004; Ju et al., 2011; Luo et al.,
2015). In addition to relying on face-value, gold-

standard data, systems may benefit from a variety
of other data representations and sources (Strauss
et al., 2016), including gazetteers, word classes
(e.g, Brown clusters), orthographic features, and
grammatical relations between types of words,
such as part of speech. Large-scale annotated
resources for NER have also been developed in
semi-supervised fashions, constructed from online
encyclopedias (Nothman et al., 2008, 2012) and
refined by crowdsourcing (Bos et al., 2017).

While NER systems have been in development
for some time, their applicability to noisy-text do-
mains (i.e., unedited, user-generated content) is
somewhat limited. This is a multi-faceted prob-
lem (Derczynski et al., 2015), involving grammat-
ical inconsistency and rapidly-shifting domains,
requiring specialized algorithms. While progress
has been made through annotation and special-
ized systems development (Ritter et al., 2011),
there are still large gains to be made for this do-
main (Augenstein et al., 2017), which is high-
lighted well by both the shared task at the W-NUT
this year (Strauss et al., 2016), and that of the pre-
vious year.

Adaptation to the task domain’s wide-range of
writing styles and abundant grammatical inconsis-
tencies presents the need for algorithmic flexibil-
ity. These properties make precision loss an is-
sue, and the presence of rare and emerging enti-
ties makes recall an extreme challenge, too. Our
participation in the present shared task relies on
a novel approach: utilizing flexible “contexts” as
features - derived from token forms - alone. We
rely upon these features for their capacity to relate
to never-before-seen tokens as potential entities,
and incorporate them into a statistical model that
can handle both gold-standard data and large, lex-
ical resources.
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2 Approach

2.1 Shared Task Data

We began our approach by scoping the task data
set composition. There were 6 named entity types:
corporation, creative work, group, location, per-
son, and product, which were a mapping down
from 10 in the 2016 W-NUT Twitter NER Shared
Task. A decomposition of the current shared task
data (see Tab. 1) exhibits several important fea-
tures. The proportion of unique entities out of all
increased from about 80% to 90% from the train-
ing to the development and test sets. However, the
training, development, and test sets all exhibited
internal stability in the proportions of unique num-
bers for each type of named entity. In other words,
no named entity type dropped out of proportion
when considering unique forms. However, the fo-
cus on rare entities resulted in large increases in
the percentage of the data occupied by the person
category. These proportions and the availability of
large-scale gazetteer data highlighted this type for
the initial focus of our model’s development.

2.2 System Design

2.2.1 Previous Work

Context models are conditional statistical models
whose features are derived from the structural pat-
terns surrounding or within written language. We
refer to context models that rely on exterior infor-
mation as external context models, and those that
rely on interior information as internal context
models. For example, word-level context models
applied to the text: “Out to lunch in New York
City.” might place the entity “New York City” in
the external context “Out to lunch in *.”, or the in-
ternal context “New York *” (in each case reserv-
ing * as a wildcard).

Context models trace their roots to Shannon
(1948), but have likewise seen recent attention (Pi-
antadosi et al., 2011). They have been applied
to both patterns of character appearance and word
appearance, with the majority of attention directed
towards word patterns and external models. In re-
cent work by Williams et al. (2015a), an internal
context model was used to identify missing multi-
word dictionary entries. We utilize this model
here, but apply it at the character level so as to be
able to identify both single snd multi-word named
entities.

2.2.2 Context-Sensitive NER
We represent a token, w, by its sequence of n char-
acters:

w = (l1, l2, · · · , ln),

and define its set of 2n−1 contexts, Cw by the cor-
responding removal patterns of contiguous subse-
quences. The context, ci···j ∈ Cw, defined by the
removal of characters i through j is:

ci···j = (l1, · · · , li−1, ∗, · · · , ∗, lj+1, · · · , ln).

Despite execution at the sub-word level, this is
precisely the same construction as in Williams
et al. (2015a), which was used to compute like-
lihoods of dictionary definition.

For a given word, weighting across its con-
texts is accomplished as in Williams et al. (2015a),
induced by a partition process (Williams et al.,
2015b). However instead of dictionary definition,
we use the context conditional probabilities to de-
termine the likelihoods of named entity tags. For
any word, w, and positive tag, t (e.g., B-location,
I-person, B-group, etc.), a computed likelihood,
L(t|Cw), can be interpreted as “the likelihood of
drawing a t-tagged word from the contexts of w”.
Note that these likelihoods can be non-zero for
words that were not present in training, and are
higher for words that are similar to tagged words.
For example, if w1 = Larry, w2 = Harry, and
only w1 appeared in a gold standard, with tag t =
B-person, L(t|Cw2) would be elevated.

2.2.3 Entity Recognition
To handle entities composed of multiple
words, e.g., (w1, w2, · · · , wk), we assess a
potential entity’s membership to a particu-
lar type, e.g., “location”, via the harmonic
mean, L(t1, t2, · · · , tk|w1, w2, · · · , wk), of their
component-word likelihood values, such that only
the first word has the B-version tag (t1) and all
others have the I-version. A candidate is accepted
if its likelihood mean is above a thresholds value,
which is determined in optimization (see Sec. 4).

2.2.4 Conflict Resolution
A given word may fall within multiple predicted
entities, both of different types and lengths. To
resolve potential conflicts between predicted enti-
ties we establish precedence by accepting 1) pre-
dictions appearing first, over 2) longer predictions,
over 3) predictions of higher likelihood.
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Category Training Development Test
Total (%) Unique (%) Total (%) Unique (%) Total (%) Unique (%)

Corporation 221 (11.19) 140 (8.73) 34 (4.07) 32 (4.29) 69 (6.63) 63 (6.82)
Creative Work 140 (7.09) 127 (7.92) 105 (12.57) 101 (13.54) 141 (13.54) 135 (14.61)

Group 264 (13.37) 231 (14.4) 39 (4.67) 38 (5.09) 151 (14.51) 131 (14.18)
Location 538 (27.75) 434 (27.06) 74 (8.86) 68 (9.12) 138 (13.26) 114 (12.34)
Person 660 (33.42) 546 (34.04) 469 (56.17) 398 (53.35) 441 (39.77) 363 (39.29)

Product 142 (7.19) 126 (7.86) 114 (13.65) 109 (14.61) 128 (12.3) 118 (12.77)
All 1975 1604 835 746 1041 924

Table 1: Description of shared-task data. Each of the Training, Development, and Test data are broken down by types
of named entities (Corporation , Creative Work, Group, Location, Person, and Product), with counts and percents for the
Unique and Total named entity forms present, in addition to total numbers of All named entities present.

3 Materials

3.1 Gold-Standard Data
In addition to the gold-standard data provided for
the shared task (see Sec. 2.1 and Tab. 1) we uti-
lize 1) all components of the W-NUT 2016 Twit-
ter NER shared task (Strauss et al., 2016), 2)
all components of the 2003 CONLL NER shared
task (Tjong Kim Sang and De Meulder, 2003), 3)
the WikiNER annotations (Nothman et al., 2008,
2012), and 4) the Groningen Meaning Bank (Bos
et al., 2017). Each corpus required mapping its en-
tity types to the six 2017 shared task types, and for
data sets (2), (3), and (4), only mappings for the
location and person types were deemed appropri-
ate (geo-loc, facility, and loc to location, and per
to person). However for data set (1), additional
mappings were accepted from tvshow and movie
to creative-work, sportsteam to group, and com-
pany to corporation.

3.2 Supplemental Lexica
To extend model training to as many forms as
possible, supplemental lexica were incorporated
from the gazetteer materials provided alongside
the gold data from the W-NUT 2016 Twitter NER
shared task. Only several gazetteers were incorpo-
rated into the final model: automotive.model and
business.consumer product for the product type;
firstname.5k, lastname.5000, people.family name,
and people.person.filtered for the person type; and
location.country for the location type. Each en-
try in a given gazetteer was treated as a weighted
instance of its named entity type. Weights off-
set the extreme size of gazetteers in comparison
to the gold standard data, and were determined as
follows. For a given entity type, let x be the num-
ber of typed named entities in the gold standard
training data, and y be the number of gazetteer en-
tries. The type’s gazetteer entries were then incor-

porated with weight x/y, and all O-tagged tokens
were counted with weight 2.

4 Optimization

Model development consisted of training on the
gold-standard training data (see Sec. 2.1), in addi-
tion to the external gold standards (see Sec. 3.1),
and the supplemental lexica (see Sec. 3.2). With
the trained model, optimization was performed
with respect to the development data set, which
notably had a disproportionate representation of
person entities. We determined thresholds for each
of the entity types through separate optimizations.
Given the brief timeline, these were conducted
adaptively, optimizing thresholds for by-type F1

values, honing in by step sizes of 0.1, 0.01, and fi-
nally 0.001. Note that the optimization procedure
exhibited no predictive power on entity types cre-
ating work and corporation, leading us to restrain
our model from predicting those types. After fi-
nal threshold parameters were determined, a final
combined model (see Sec. 2.2.4) was allowed to
train additionally on the development data set be-
fore being applied to the final test data set.

5 Results

To understand our model’s performance in the
context of other systems, we provide a fine-
grained system evaluation across the entity types
(see Tab. 2). This follows the specialized shared-
task evaluation method, focusing on precision, re-
call, and F1 with respect to unique named entity
surface forms. On the primary categories in which
our model made predictions (location and person),
our model’s performance was reasonably competi-
tive, with high levels of precision. At location, our
system outperformed two other models by overall
F1, and was in range of the other models with re-
spect to the person type. For all other entity types,
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Category Arcada Drexel-CCI FLYTXT MIC-CIS SJTU-Adapt SpinningBytes UH Ritual
Precision

Corporation 20.37 0 25.00 12.86 26.67 10.59 38.89
Creative Work 37.21 0 33.33 23.64 60.00 26.03 35.71

Group 35.29 0 26.47 25.00 31.65 31.71 39.34
Location 39.04 58.21 33.33 36.21 34.48 61.05 52.34
Person 54.90 49.58 61.15 46.76 64.83 55.94 68.46

Product 25.00 25.00 16.67 18.03 21.15 16.67 28.21
All 43.93 50.64 43.52 36.82 46.36 45.33 55.18

Recall
Corporation 32.83 0 12.70 14.29 19.05 14.29 22.22

Creative Work 11.85 0 12.59 9.63 2.22 14.07 7.41
Group 18.32 0 13.85 20.61 19.08 9.92 18.32

Location 49.57 33.91 44.35 54.78 52.17 50.43 48.70
Person 50.82 32.42 49.73 45.60 51.65 62.09 48.90

Product 9.32 0.85 6.78 9.32 9.32 4.24 9.32
All 32.83 17.06 30.45 31.21 32.29 35.64 31.64

F1
Corporation 18.80 0 16.84 13.53 22.22 12.16 28.28

Creative Work 17.98 0 18.28 13.68 4.29 18.27 12.27
Group 24.12 0 17.09 26.87 23.81 15.12 25.00

Location 43.68 42.86 38.06 43.60 41.52 55.24 50.45
Person 52.78 39.2 54.85 46.18 57.49 58.85 57.05

Product 13.58 1.64 9.64 12.29 12.94 6.76 14.01
All 37.58 25.53 35.83 33.78 38.06.86 39.90 40.22

Table 2: Shared-task results. All precision, recall, and F1 values are computed with respect to unique entity forms, in
accordance with the task specific evaluation.

our system performed poorly (although no predic-
tions were made for the corporation and creative
work categories). Notably, the only categories
at which other teams performed consistently well
were the person and location categories, with the
main observation being low recall, rarely above
20%.

6 Discussion

For this shared task we developed and evaluated
a novel NER algorithm that relies only on fea-
tures derived from word forms. Despite having the
lowest task evaluation scores, this model exhibited
competitive performance at two of the largest cat-
egories. These two categories (person and loca-
tion) had significant external data availabile (both
gold standards and supplemental lexica), and ex-
hibited the most promise during model optimiza-
tion. The system’s ability to perform competi-
tively at these entity types appears to suggest that
increased performance at the other types may be
possible with the availability of other, category-
specific and large-scale external resources.

We note that our model’s optimization exhibited
an extreme lack of predictive power at the cor-
poration and creative work categories, which, in

addition to being affected by sparsity, may have
also been affected by the lack of acceptable map-
pings from the external gold-standard resources
into these categories. While lexical data were
weighted to good effect (increased performance),
the coverage of gold standard data only over the
person and location entity types may have neg-
atively impacted our system’s ability to predict
other types. Thus, a potential improvement for
prediction of these types might be accomplished
by applying a similar weighting scheme to the ex-
ternal gold-standard data. This leaves us with av-
enues for improvement, along with competitive,
task-specific scores at the person and location cat-
egories; all of this, while relying on features de-
rived only from word forms, points toward value
in the continued development of context-sensitive
NER for rare and emerging entities.
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