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Abstract

This work presents a fine-grained, text-
chunking algorithm designed for the task of
multiword expressions (MWEs) segmentation.
As a lexical class, MWEs include a wide vari-
ety of idioms, whose automatic identification
are a necessity for the handling of colloquial
language. This algorithm’s core novelty is its
use of non-word tokens, i.e., boundaries, in
a bottom-up strategy. Leveraging boundaries
refines token-level information, forging high-
level performance from relatively basic data.
The generality of this model’s feature space al-
lows for its application across languages and
domains. Experiments spanning 19 different
languages exhibit a broadly-applicable, state-
of-the-art model. Evaluation against recent
shared-task data places text partitioning as
the overall, best performing MWE segmen-
tation algorithm, covering all MWE classes
and multiple English domains (including user-
generated text). This performance, coupled
with a non-combinatorial, fast-running design,
produces an ideal combination for implemen-
tations at scale, which are facilitated through
the release of open-source software.

1 Introduction

Multiword expressions (MWEs) constitute a
mixed class of complex lexical objects that often
behave in syntactically unruly ways. A unifying
property that ties this class together is the lexical-
ization of multiple words into a single unit. MWEs
are generally difficult to understand through gram-
matical decomposition, casting them as types of
minimal semantic units. There is variation in
this non-compositionality property (Bannard et al.,
2003), which in part may be attributed to differ-
ences in MWE types. These range from multi-
word named entities, such as Long Beach, Califor-
nia, to proverbs, such as it takes one to know one,
to idiomatic verbal expressions, like cut it out
(which often contain flexible gaps). For all
of their strangeness they appear across natural

languages (Jackendoff, 1997; Sag et al., 2002),
though generally not for common meanings, and
frequently with opaque etymologies that confound
non-native speakers.

1.1 Motivation

There are numerous applications in NLP for which
a preliminary identification of MWEs holds great
promise. This notably includes idiom-level ma-
chine translation (Carpuat and Diab, 2010); re-
duced polysemy in sense disambiguation (Fin-
layson and Kulkarni, 2011); keyphrase-refined in-
formation retrieval (Newman et al., 2012); and
the integration of idiomatic and formulaic lan-
guage in learning environments (Ellis et al., 2008).
Parallel to these linguistically-focused applica-
tions is the possibility that MWE identification
can positively affect machine learning applications
in text analysis. Regardless of algorithm com-
plexity, a common preliminary step in this area
is tokenization. Having the “correct” segmenta-
tion of a text into words and MWEs results in a
meaning-appropriate tokenization of minimal se-
mantic units. Partial steps in this direction have
been taken through recent work focusing on mak-
ing the bag of phrases framework available as a
simple improvement to the bag of words. How-
ever, that work (Handler et al., 2016) utilized only
noun phrases, leaving the connection between
MWEs and a comprehensive bag of phrases frame-
work yet to be acknowledged. With the specific
focus of MWEs on idiomaticity, a comprehensive
bag of words and phrases framework would be
possible, provided the MWE identification task is
resolved.

1.2 Task description

Despite the variety that exist, studies often only
focus on a few MWEs classes, or on only specific
lengths (Tsvetkov and Wintner, 2011). In fact,
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named entity extraction may be thought of as satis-
fying the MWE identification task for just this one
MWE class. The problem has a broader framing
when all classes of MWEs are considered. Fur-
thermore, since a mixed tokenization of words and
phrases as minimal semantic units is a desired out-
come, it is helpful to consider this task as a kind of
fine-grained segmentation. Thus, this work refers
to its task as MWE segmentation, and not iden-
tification or extraction. In other words, the spe-
cific goal here is to delimit texts into the smallest
possible, independent units of meaning. Schneider
et al. (2014b) were the first to treat this problem as
such, when they created the first data set compre-
hensively annotated for MWEs. From this data set,
an exemplar annotated record is:1

My wife had taken1 her 07’2 Ford2 Fusion2 in1
for a routine oil3 change3.

whose segmentation is an example of the present
focus of this work. Note that the present study
focuses only on MWE tokens, does not aim to ap-
proach the task of MWE class identification, and
does not attempt to disambiguate MWE meanings.
For detailed descriptions of these other MWE-
related tasks, Baldwin and Kim (2010) provide an
extensive discussion.

1.3 Existing work

The identification of MWEs and collocations is
an area of study that has seen notable focus in
recent years (Seretan, 2008; Pecina, 2010; New-
man et al., 2012; Ramisch, 2015; Schneider et al.,
2014a), and has a strong history of attention (both
directly and through related work) in the liter-
ature (Becker, 1975; Church and Hanks, 1990;
Sag et al., 2002). It has become commonplace
for approaches to leverage well-studied machine
learning algorithms such as structured percep-
trons (Schneider et al., 2014a) and conditonal ran-
dom fields (Constant and Sigogne, 2011; Hos-
seini et al., 2016). The flexibility of these algo-
rithms allow researchers to mix a variety of fea-
ture types, ranging from tokens to parts of speech
to syntax trees. Juxtaposed to these relatively-
complex models exist the simpler and more-
heuristic (Cordeiro et al., 2015). Some rely sin-
gularly on MWE dictionaries, while others incor-
porate multiple measures or are rule-based, like

1 Note that color/indices redundantly indicate separate
MWEs, with the colored box highlighting an MWE’s gap,
and black, unnumbered text tokenized simply as words.

those present in the suite available through mwe-
toolkit (Ramisch, 2015) or jMWE (Kulkarni and
Finlayson, 2011).

MWEs have been the focus of considerable
attention for languages other than English, too.
Hungarian MWE corpora focusing on light verb
constructions have been under development for
some time (T. et al., 2011). In application to
the French language, part-of-speech tagging has
seen benefit (Constant and Sigogne, 2011) through
awareness and relativity to MWEs. Recently,
Savary et al. (2017) conducted a shared task for
the identification of verbal MWEs with a data set
spanning 18 languages (excluding English). While
extending this area of work to a large variety of
languages, this task saw notable multilingual algo-
rithmic developments (Saied and Candito, 2017),
but did not approach the identification of all MWE
classes, comprehensively. On the other hand, a Se-
mEval 2016 shared task (Schneider et al., 2016)
covered English domains and all MWE classes,
bearing the greatest similarity to the present work.
In general, these shared tasks have all highlighted
a need for the improvement of algorithms.

2 Algorithms

2.1 Text partitioning
Text partitioning is a physical model developed
recently (Williams et al., 2015) for fine-grained
text segmentation. It treats a text as a dichotomous
squence, alternating between word (wi) and non-
word (bi) tokens:

(· · · , bi−1, wi, bi, wi+1, bi+1 · · ·)
The key feature of text partitioning is its treat-
ment of non-word, i.e., “boundary”, tokens. Act-
ing like glue, these may take one of two distinct
states, s ∈ {0, 1}, identifying if a non-word token
is bound (b1

i ) or broken (b0
i ). A non-word token

in the bound state binds words together. Thus,
a text partitioning algorithm is a function that de-
termines the states of non-word tokens.

In its original development, text partitioning
was studied simplistically, with space as the only
non-word token. In that work, a threshold proba-
bility, q, was set. For each space, bi, in a text, a
uniform random binding probability, qi, would be
drawn. If qi > q, bi would be bound, and other-
wise it would be broken. As a parameter, q thus al-
lowed for the tuning of a text into its collection of
words (q = 1), clauses (q = 0), or, for any value,
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q ∈ (0, 1), a randomly-determined collection of
N -grams. While non-deterministic, this method
was found to preserve word frequencies, (unlike
the sliding-window method), and made possible
the study of Zipf’s law for mixed distributions of
words and N -grams.

The present work utilizes the parameter q to de-
velop a supervised machine learning algorithm for
MWE segmentation. A threshold probability, q, is
still set, and the supervised component is the de-
termination of the binding probabilities (qi) for a
text’s non-word tokens. Provided a gold-standard,
MWE-segmented text:

(· · · , bsi−1

i−1 , wi, b
si
i , wi+1, b

si+1

i+1 · · ·)
let f(wi, b

si
i , wi+1) denote the frequency at which

a boundary bi is observed between wi and wi+1 in
the state si. Provided this, a binding probability is
defined as:

qi =
f(wi, b

1
i , wi+1)

f(wi, b1
i , wi+1) + f(wi, b0

i , wi+1)
.

This basic, 2-gram text partitioning model makes
the binding probabilities a function of bound-
aries and their immediately-surrounding words.
In principle, this might be extended to a more-
nuanced model, with binding probabilities refined
by larger-gram information.

2.1.1 Extensions
Some MWEs consist of non-contiguous spans
of words. These varieties are often referred to
as “gappy” expressions, an example of which is
shown in Sec. 1.2. Text partitioning may easily be
extended to handle gappy MWEs by instituting a
unique boundary token,2 e.g.,

b = GAP

that indicates the presence of a gap. For example,
to handle the gappy MWE out of control in the
statement:

The situation was out1 of1 their control1 .

a binding probability for b (as above) between
words w5 = of and w7 = control would be com-
puted from the state frequencies f(w5, b

{0,1}, w7).
Since gappy MWEs are relatively sparse as com-
pared to other MWEs, a single gap-boundary to-
ken is used for all gap sizes. This is designed

2 Note that the exact form for b that is used to indicate
a gap is not important, but that it just needs to be unique to
compute state frequencies and binding probabilities.

for a flexible handling of variable gap sizes, given
the relatively small amount of gold-standard data
that is presently available. However, this may in
principle be refined to particular gap-sized speci-
fications, possibly ideal for higher precision in the
presence of larger quantities of gold-standard data.

A number of MWE types, such as named en-
tities, are entirely open classes. Often occurring
only once, or as entirely emergent objects, these
pose a significant challenge for MWE segmenta-
tion, along with the general sparsity and size of the
current gold-standards. For their inclusion in the
gold-standard datasets and the general quality of
automated taggers, part-of-speech (POS) informa-
tion may generally be leveraged to increase recall.
These data are utilized in a parallel text partition-
ing algorithm, swapping tokens for tags,3 so that
binding probabilities, qi,tok and qi,POS, are com-
puted for both data types. Two thresholds are then
used to determine states via a logical disjunction,
i.e., bi binds if qi,tok > qtok ∨ qi,POS > qPOS.

Algorithm 1 Pseudocode for the longest first de-
fined (LFD) algorithm. Here, a candidate MWE’s
tokens are pruned from left to right for the longest
referenced in a training lexicon, lex. When no
form is found in lex, the first token is automati-
cally pruned, (accepting it as an expression), leav-
ing the algorithm to start from the next. Note that
the “_” symbol indicates a concatenation opera-
tion in line 10, where the current form is placed
onto the end of the lexemes array.

1: procedure LFD(tokens)
2: lexemes← (·)
3: N ← length(tokens)
4: while N do
5: indices← (N + 1) : 1
6: for i in indices do
7: form← join(tokens[0 : i])
8: remaining ← tokens[i : N ]
9: if form ∈ lex or not i− 1 then

10: lexemes← lexemes_form
11: if length(tokens) = 1 then
12: tokens← (·)
13: else
14: tokens← remaining

15: break
16: N ← length(tokens)
17: return lexemes

3 Note that this requires the inclusion of a special POS
tag, e.g., “SP”, for the space character.
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2.2 The longest first defined

In the presented form, text partitioning only fo-
cuses on information immediately local to bound-
aries (surrounding word pairs). This has positive
effects for recall, but can result in lower preci-
sion, since there is no guarantee that a sequence
of bound tokens is an MWE. For example, if pre-
sented with the text:

“I go for take out there, frequently.”

the segment take out there might be bound, since
take out and out there are both known MWE
forms, potentially observed in training. To bal-
ance this, a directional, lookup-based algorithm
is proposed. Referred to as the longest first de-
fined (LFD) algorithm (see Alg. 1), this algo-
rithm prunes candidates by clipping off the longest
known (MWE) references along the reading di-
rection of a language. This requires knowledge
of MWE lexica, which may be derived from
both gold-standard data and external sources (see
Sec. 3). Continuing with the example, if the
text partitioning algorithm outputs the candidate,
take out there, it would next be passed to the LFD.
The LFD would find take out there unreferenced,
and check the next-shortest (2-word) segments,
from left to right. The LFD would immediately
find take out referenced, output it, and continue on
the remainder, there. With only one term remain-
ing, the word there would then be trivially output
and the algorithm terminated. While this algo-
rithm will likely fail when confronted with patho-
logical expressions, like those in “garden path”
sentences, e.g., “The prime number few.”, direc-
tionality is a powerful heuristic in many languages
that may be leveraged for increased precision.

3 Materials

3.1 Gold standard data

Treating MWE segmentation as a supervised ma-
chine learning task, this work relies on several
recently-constructed MWE-annotated data sets.
This includes the business reviews contained in the
Supersense-Tagged Repository of English with a
Unified Semantics for Lexical Expressions, anno-
tated by Schneider et al. (2014b; 2015). These
data were harmonized and merged with the Rit-
ter and Lowlands data set of supersense-annotated
tweets (Johannsen et al., 2014) for the SemEval
2016 shared task (#10) on Detecting Minimal
Semantic Units and their Meanings (DIMSUM),

conducted by Schneider et al. (2016). The DIM-
SUM data set additionally possesses token lem-
mas and gold-standard part of speech (POS) tags
for the 17 universal POS categories. In addition to
the shared task training data of business reviews
and tweets, the DIMSUM shared task resulted
in the creation of three domains of testing data,
which spanned business reviews, tweets, and TED
talk transcripts. All DIMSUM data are compre-
hensive in being annotated for all MWE classes.

To evaluate against a diversity of languages this
work also utilizes data produced by the multi-
national, European Cooperation in Science and
Technology’s action group: PARSing and Multi-
word Expressions within a European multilingual
network (PARSEME) (Savary et al., 2015). In
2017, the PARSEME group conducted a shared
task with data spanning 18 languages4 (Savary
et al., 2017), focusing on several classes of ver-
bal MWEs. So, while the PARSEME data are not
annotated for all MWEs classes, they do provide
an assessment against multiple languages. How-
ever, the resources gathered for the 18 languages
exhibit a large degree of variation in overall size
and numbers of MWEs annotated, leading to ob-
servable differences in identifiability.

The gold standard data sets were produced with
variations in annotation formats. The DIMSUM
data set utilizes a variant of the beginning in-
side outside (BIO) scheme (Ramshaw and Mar-
cus, 1995) used for named entity extraction. Ad-
ditionally, their annotations indicate which tokens
are linked to which, as opposed to the PARSEME
data set, which simply identifies tokens to indexed
MWEs. Note that this has implications to task
evaluation: the PARSEME evaluations can only
assess tokens’ presence inside of specific MWEs,
while the DIMSUM evaluations can focus on spe-
cific token-token attachments/separations. Eval-
uations against the DIMSUM datasets are there-
fore more informative of segmentation, than iden-
tification. Additionally, the DIMSUM data sets
use lowercase BIO tags to indicate the presence

4 While the shared task was originally planned to cover
21 languages, corpus release was only achieved for Bulgarian
(BG), Czech (CS), German (DE), Greek (EL), Spanish (ES),
Farsi (FA), French (FR), Hebrew (HE), Hungarian (HU), Ital-
ian (IT), Lithuanian (LT), Maltese (MT), Polish (PL), Brazil-
ian Portuguese (PT), Romanian (RO), Slovene (SL), Swedish
(SV), and Turkish (TR). No sufficiently available native an-
notators were found for English (EN), Yiddish (YI), and
Croatian (HR). High-level data (including POS tags) were
provided for all of the 18 languages, except BG, HE, and LT.
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of tokens inside of the gaps of others. How-
ever, the DIMSUM data sets provide no informa-
tion on the locations of spaces in sentences, un-
like the PARSEME data sets, which do. Since
the present work relies on knowledge of spaces
to identify token-token boundaries for segmenta-
tion, the DIMSUM data sets had to first be pre-
processed to infer the locations of spaces. This is
done in such a way as to preserve comparability
with the work others, (discussed in Sec. 4.1).

3.2 Support data

The gold-standard data sets (DIMSUM, and
PARSEME) exhibit variations in size, domain,
language, and in the classes of annotated MWEs.
Ideally, each of these data sets would cover all
MWE classes. Since the English data sets do,
and many are open classes (e.g., the named en-
tity class readily accepts new members), gold stan-
dards cannot be expected to cover all MWE forms.
So, to produce segmentations that identify rare
MWEs, like those that occur once in the gold stan-
dard data, this work relies on support data. Note
that because the PARSEME data set covers a re-
stricted set of MWE types (verbal MWEs, only),
type-unrestricted lexical resources, such as Wik-
tionary and Wikipedia, can be expected to substan-
tially hurt precision while helping recall. Thus,
the support data described below are only used for
the English language experiments, i.e., the DIM-
SUM data sets. Enhancement by support data for
the PARSEME task and extension to the identifi-
cation of MWE types are thus left for future devel-
opment, together.

Since this work approaches the problem as a
segmentation task, information is needed on MWE
edge-boundaries. Thus, support data must present
MWEs in their written contexts, and not just as
entries in a lexicon. Example usages of dictionary
entries provide this detail, and are leveraged from
Wiktionary (data accessed 1/11/16) and Word-
net (Miller, 1995). These exemplified dictionary
entries help to fill gold standard data gaps, but still
lack many noun compounds and named entities.
Outside of dictionaries, MWEs such as these may
be found in encyclopedias. Thus, the Wikipedia
hyperlinks present in all Wikipedia (data accessed
5/1/16) articles are utilized. Specifically, the exact
hyperlink targets are used (not the displayed text),
and without using any term extraction measures
for filtering, as opposed to the data produced by

Hartmann et al. (2012). This results in data that are
noisy, with many entities that may not actually be
classifiable as MWEs. However, their availability
and broad coverage offset these negative proper-
ties, which is exhibited by this work’s evaluation.

4 Methods

4.1 Pre-processing

None of the gold standard data sets explicitly iden-
tify the locations of spaces in their annotations.
This is a challenge for the present work, since it
focuses on word-word boundaries (of which space
is the most common) to identify the separations
between segments. This turns out to not be an is-
sue with the PARSEME data sets, which indicate
when a given token is not followed by a space.
However for the DIMSUM data sets, the locations
of spaces had to be inferred. To resolve this is-
sue, a set of heuristic rules are adopted with a de-
fault assumption of space on both sides of a to-
kens. Exceptions to this default include, group
openings (e.g., brackets and parentheses) and odd-
indexed quotes (double, single, etc.), for which
space is only assumed at left; and punctuation to-
kens (e.g., commas and periods), group closures
(e.g., brackets and parentheses), and even-indexed
quotes (double, single, etc.), for which space is
only assumed at right. While these heuristics
will certainly not correctly identify all instances
of space, they make the data sets more faithful to
their original texts. Furthermore, since the anno-
tations and evaluation procedures only focus on
links between non-space tokens, the data may be
re-indexed during pre-processing so as to allow
for any resulting evaluation to be comparable to
those of the data set authors’ and shared task par-
ticipants’. Thus, the omission of space characters
and their inference in this work only negatively
impacts text partitioning’s evaluation. In other
words, if this work were applied to annotated data
that properly represents space, higher performance
might be exhibited.

4.2 Evaluation

It is reasonably straightforward to measure preci-
sion, recall, and F1 for exact matches of MWEs.
However, this strategy is unreasonably coarse,
failing to represent partial credit when algorithms
get only portions of MWEs correct. Thus, the de-
velopers of the different gold standard data sets
have established other evaluation metrics that are
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more flexible. Utilizing these partial credit MWE
evaluation metrics provides refined detail into the
performance of algorithms. However, these are
not the same across the gold standard data sets. So,
to maintain comparability of the present results,
this work uses the specific strategies associated to
each shared task.

In application to the PARSEME data sets, pre-
cision, recall, and F1 describe tokens’ presence
in MWEs. Alternatively, DIMSUM-style metrics
measure link/boundary-based evaluations. Specif-
ically, this strategy checks if the links between
tokens are correct. Note that this latter (DIM-
SUM) evaluation is better aligned to the formu-
lation of text partitioning, but leaves the number
evaluation points at one fewer per MWE than the
PARSEME scheme. Thus, PARSEME evaluations
favor longer MWEs more heavily.

4.3 Experimental design

The basic text partitioning model relies on the
single threshold parameter, q, and integration of
POS tags relies on a second. So, optimization ul-
timately entails the determination of parameters
for both tokens, qtok, and POS tags qPOS. To
balance both precision and recall, these parame-
ters are determined through optimization of the F1

measure. In the absence of the LFD, F1-optimal
pairs, (qtok, qPOS), are first determined via a full
parameter scan over

(qtok, qPOS) ∈ {0, 0.01, · · · , 0.99, 1}2.

For a given threshold pair, LFD-enhancement can
then only increase precision, while decreasing re-
call. So, subsequent optimization with the LFD is
accomplished through scanning values of qtok and
qPOS in the parameter space no less than those pre-
viously determined for basic, non-LFD model.

The different experiments were conducted in
accordance with the protocols established by the
designers of data sets and shared tasks, and in
all cases, an eight-fold cross-validation was con-
ducted for optimization. Exact comparability was
achieved for the DIMSUM and PARSEME ex-
periments as a result of the precise configura-
tions of training and testing data from the shared
tasks. Moreover, since an evaluation script was
provided for each, metrics reported for DIMSUM
and PARSEME experiments are in complete ac-
cord with the results of the shared tasks. For
the DIMSUM experiments, results should be com-

pared to the open track (external data was uti-
lized), and for the PARSEME experiments, results
should be compared to the closed track (no exter-
nal data was utilized).

5 Results

Evaluations spanning the variety of languages (19,
in total) showed high levels of performance, espe-
cially in application to English, where there was
a diversity of domains (business reviews, Tweets,
and TED talk transcripts), along with comprehen-
sive MWE annotations. Moreover, these results
were generally observed for text partitioning both
with, and without the LFD. As expected, applica-
tion of the LFD generally led to increased preci-
sion. While integration of POS tags was found to
generally improve MWE segmentation in all En-
glish experiments, this was frequently not the case
in applications to other languages. However, this
observation should be taken with consideration for
the restriction to the fewer MWE classes (verbal
MWEs, only) annotated in the PARSEME (non-
English) shared task languages, and additionally
the fact that no external data were used. Detailed
results for all DIMSUM and PARSEME experi-
ments are recorded in Tab. 1.

For the DIMSUM experiments, final param-
eterizations were determined as (qtok, qPOS) =
(0.5, 0.71) for text partitioning, alone, and
(qtok, qPOS) = (0.74, 0.71) for the LFD-enhanced
model. Comparing the base and LFD-enhanced
models, higher overall performance was always
achieved with the LFD (increasing F1 by as many
as 12 points). Including text partitioning in the
shared-task rankings (for a total of 5 models)
placed the LFD-enhanced model first at all do-
mains but Twitter, for which third was reached
(though within 3 F1-points of first). However,
combining all three domains into a single exper-
iment placed the LFD-enhanced text partitioning
algorithm as first, making it the best-performing
algorithm, overall. In application to the user-
reviews domain, text partitioning maintained first-
place status, even without the LFD enhancement.
For all other domains the base model ranked third.

For the PARSEME experiments, final param-
eterizations varied widely. This is not surpris-
ing, considering the significant variation in data
set annotations and domains across the 18 lan-
guages. Additionally, POS tags were found to
be of less-consistent value to the text partition-
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Experiment LFD qtok qPOS P R F1 Rank F1-range
DIMSUM

EN N 0.5 0.71 0.5396 0.5507 0.5451 3/5 0.1348 – 0.5724
EN Y 0.74 0.71 0.6538 0.5606 0.6036 1/5 -

Tweets N 0.5 0.71 0.5897 0.5226 0.55542 3/5 0.1550 – 0.6109
Tweets Y 0.74 0.71 0.6667 0.5185 0.5833 3/5 -

Reviews N 0.5 0.71 0.5721 0.5584 0.5626 1/5 0.0868 – 0.5408
Reviews Y 0.74 0.71 0.6742 0.5823 0.6249 1/5 -

TED N 0.5 0.71 0.3984 0.6108 0.4823 3/5 0.2011 – 0.5714
TED Y 0.74 0.71 0.5810 0.6228 0.6012 1/5 -

PARSEME
BG N 0.79 N/A 0.7071 0.5141 0.5954 2/3 0.5916 – 0.6615
BG Y 0.83 N/A 0.8534 0.4309 0.5727 3/3 -
CS N 0.73 0.0 0.7849 0.6655 0.7203 3/5 0.2352 – 73.65
CS Y 0.9 0.59 0.8363 0.6324 0.7202 3/5 -
DE N 0.82 0.0 0.5582 0.2788 0.3719 4/6 0.283 – 0.4545
DE Y 0.98 0.78 0.6892 0.2010 0.3112 5/6 -
EL N 0.78 0.0 0.3931 0.3815 0.3872 5/6 0.3871 – 0.4688
EL Y 0.99 0.66 0.5755 0.3314 0.4206 4/6 -
ES N 0.64 0.71 0.7473 0.4098 0.5293 2/6 0.3093 – 0.5839
ES Y 0.99 0.71 0.7526 0.4371 0.5530 2/6 -
FA N 0.57 0.68 0.7040 0.8313 0.7624 3/3 0.8536 – 0.9020
FA Y 0.93 0.68 0.7028 0.8266 0.7597 3/3 -
FR N 0.73 0.0 0.6589 0.3836 0.4849 4/7 0.1 – 0.6152
FR Y 0.88 0.0 0.9045 0.3592 0.5142 3/7 -
HE N 0.78 N/A 0.5969 0.2107 0.3115 2/3 0.0 – 0.313
HE Y 1.0 N/A 0.9714 0.1812 0.3056 2/3 -
HU N 0.97 0.66 0.7221 0.6612 0.6903 2/6 0.6226 – 0.7081
HU Y 0.97 0.66 0.7208 0.6568 0.6873 3/6 -
IT N 0.85 0.0 0.5497 0.3174 0.4024 2/5 0.1824 – 0.4357
IT Y 0.97 0.92 0.6503 0.2804 0.3919 2/5 -
LT N 0.79 N/A 0.6567 0.1803 0.2830 1/3 0.0 – 0.2533
LT Y 1.0 N/A 0.6471 0.1352 0.2237 2/3 -
MT N 0.86 0.0 0.1591 0.1538 0.1564 2/5 0.0 – 0.1629
MT Y 0.98 0.0 0.2126 0.1138 0.1483 2/5 -
PL N 0.66 0.0 0.8962 0.5966 0.7164 2/5 0.0 – 0.7274
PL Y 0.66 0.0 0.9623 0.5966 0.7366 1/5 -
PT N 0.79 0.0 0.7518 0.4921 0.5948 4/5 0.3079 – 0.7094
PT Y 0.95 0.0 0.8717 0.4605 0.6027 3/5 -
RO N 0.71 0.0 0.8350 0.7850 0.8092 3/5 0.7799 – 0.8358
RO Y 0.87 0.0 0.8766 0.7832 0.8272 2/5 -
SL N 0.7 0.0 0.6606 0.4504 0.5356 1/5 0.3320 – 0.4655
SL Y 0.76 0.0 0.7192 0.3959 0.5107 1/5 -
SV N 1.0 0.95 0.0949 0.7771 0.1691 5/5 0.2669 – 0.3149
SV Y 1.0 0.95 0.1013 0.7751 0.1792 5/5 -
TR N 0.87 0.0 0.3852 0.3706 0.3778 5/5 0.4550 – 0.5528
TR Y 0.9 0.91 0.3814 0.4037 0.3922 5/5 -

Table 1: Evaluation results, including data sets (Experiment); the LFD’s application (LFD); token (qtok) and POS (qPOS)
thresholds; precision (P ), recall (R), and F-measure (F1); shared-task rank (Rank); and shared task F1 ranges (F1-Range).
DIMSUM experiments spanned three domains: Twitter (Tweets), business reviews (Reviews), and TED talk transcripts (TED),
with combined evaluation under EN. PARSEME language experiments are identified by ISO 639-1 two-letter codes.

ing algorithm, particularly when the LFD was
not applied. Indeed, cross-validation of the base
model resulted in qPOS = 0 as optimal for 11 out
of the 15 languages where POS tags were made
available. However, cross-validation of the LFD-
enhanced algorithm resulted in only 6 parameteri-
zations having qPOS = 0 as optimal. First place
status was achieved for three out of the 18 lan-

guages (LT, PL, and SL), and for all languages
aside from SV and TR, mid-to-high ranking F1

values were achieved.5 In contrast to the DIM-

5 Note that anomalous MWEs were observed in the DE
HU data sets, where large portions of the annotated MWEs
consisted of only a single token. While the PARSEME an-
notation scheme includes multiword components that span a
single token, e.g., “don’t” in don’t talk the talk, those ob-
served in DE and HU were found outside of the annotation
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SUM data sets, application of the LFD improved
F1 scores in only roughly half of the experiments.

6 Discussion

Evaluation against the comprehensively-annotated
English data sets has shown text partitioning to be
the current highest overall ranking MWE segmen-
tation algorithm. This result is upheld for two out
of the three available test domains (business re-
views and TED talk transcripts), with a close third
place achieved against data from Twitter. This ex-
hibits the algorithms general applicability across
domains, and especially in the context of noisy
text. Combined with the algorithm’s fast-running
and non-combinatorial nature, this makes text par-
titioning ideal for large-scale applications to the
identification of colloquial language, often found
on social media. For these purposes, the presented
algorithms have been made available as open-
source tools as the Python “Partitioner” module,
which may be accessed through Github6 and the
Python Package Index7 for general use.

Unfortunately, the PARSEME experiments did
not provide an evaluation against all types of
MWEs. However, they did exhibit the general
applicability of text partitioning across languages.
So, while the PARSEME data are not sufficient for
comprehensive MWE segmentation, trained mod-
els have also been made available for the 18 non-
English languages through the Python Partitioner
module. Across the 18 PARSEME shared-task
languages text partitioning’s F1 values were found
to rank as mid to high, with the notable exception
of SV. While the SV data is peculiar in being quite
small (with its training set smaller than its testing
set), models entered into the PARSEME shared
task achieved roughly twice the F1 score for SV,
indicating the possibility that text partitioning re-
quires some critical mass of training data in order
to achieve high levels of performance. Thus, for
general increases in performance and for extension
to comprehensive MWE segmentations, future di-
rections of this work will likely do well to seek the

format. This included 27.2% of all MWEs annotated in the
DE test records and 64.8% of all in the HU test records. Since
text partitioning identifies segment boundaries, it cannot han-
dle these anomalous MWEs, unlike the models entered into
the PARSEME shared task. So to accommodate these and
maintain comparability, a separate algorithm was employed.
This simply placed lone MWE tags on tokens that were ob-
served as anomalous 50% or more of the time in training.

6 https://github.com/jakerylandwilliams/partitioner
7 https://pypi.python.org/pypi/partitioner

collection of larger and more-comprehensive data
sets.

As defined, text partitioning is subtly different
from a 2-gram model: it focuses on non-word
boundary tokens, as opposed to just word-word
pairs. Because this algorithm relies on knowledge
of boundary token states, it cannot be trained well
on MWE lexica, alone. Fort this model to achieve
high precision, boundaries commonly occurring as
broken must be observed as such, even if they are
necessary components of known MWEs. Thus,
the use of boundary-adjacent words for prediction
is a limitation of the present model. This may
possibly be overcome through use of more dis-
tant words and boundaries. However, since gold-
standard data are still relatively small, they will
likely require significant expansion before such
models may be effectively implemented. Thus, fu-
ture directions with more nuanced text partition-
ing models highlight the importance of generating
more gold standard data, too.
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