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Abstract

In this paper, we describe the DeepNNNER entry to The 2nd Workshop on Noisy User-generated
Text (WNUT) Shared Task #2: Named Entity Recognition in Twitter. Our shared task submission
adopts the bidirectional LSTM-CNN model of Chiu and Nichols (2016), as it has been shown to
perform well on both newswire and Web texts. It uses word embeddings trained on large-scale
Web text collections together with text normalization to cope with the diversity in Web texts, and
lexicons for target named entity classes constructed from publicly-available sources. Extended
evaluation comparing the effectiveness of various word embeddings, text normalization, and
lexicon settings shows that our system achieves a maximum F1-score of 47.24, performance
surpassing that of the shared task’s second-ranked system.

1 Introduction

Named entity recognition (NER) is an important part of natural language processing. It is a challenging
task that requires robust recognition to detect common entities over a large variety of expressions and
vocabularies. These problems are intensified when targeting Web texts because of challenges such as
differences in spelling and punctuation conventions, neologisms, and Web markup (Baldwin et al., 2015).

Traditional approaches to NER on newswire texts has been dominated by machine learning methods
that rely heavily on manual feature engineering and external knowledge sources (Ratinov and Roth,
2009; Lin and Wu, 2009; Passos et al., 2014). Recently, neural network models – especially those that
use recursive models – have shown that state of the art performance can be achieved with little feature
engineering (Collobert et al., 2011; Santos et al., 2015; Chiu and Nichols, 2016). However, despite their
popularity for NER on newswire texts, neural networks have not been widely adopted for NER on Web
texts, with the exception of the feed-forward neural network (FFNN) model of Godin et al. (2015).

In this paper, we present the DeepNNNER entry to the WNUT 2016 Shared Task #2: Named Entity
Recognition in Twitter. Our shared task submission is based on the model of Chiu and Nichols (2016),
a hybrid model of bidirectional long short-term memory (BLSTM) networks and convolutional neural
networks (CNN) that automatically learns both character- and word-level features, and which holds the
current state-of-the-art on both newswire texts (CoNLL 2003) and diverse corpora including Web texts
(OntoNotes 5.0). In contrast to CRFs, FFNNs, and other windowed models, the BLSTM gives our
model effectively infinite context on both sides of a word during sequential labeling. The character-level
CNN allows our model to learn relevant features from the orthography of words, which is important in
task where unseen words are commonplace. Finally, it also encodes partial lexicon matches in neural
networks, allowing it to make effective use of lexical knowledge.

Our primary contribution is adapting the model of Chiu and Nichols (2016) to Twitter data by devel-
oping a text normalization method to effectively apply word embeddings to large vocabulary Web texts
and automatically constructing lexicons for the shared task’s target NE classes from publicly-available
sources. The rest of our paper is organized as follows. In Section 2, we describe the adaptations made to
Chiu and Nichols (2016)’s model. In Section 3, we describe the evaluation methodology. In Section 4,
we discuss the results and present an error analysis. In Section 5, we summarize related research. Finally,
in Section 6, we give concluding remarks.
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Figure 1: Our proposed system architecture for NER. Feature embeddings are constructed following
Section 2.1. The output from both the forward and the backward LSTM are fed through a linear and a
log-softmax layer before being added together (shown as ”Output layers”) to produce the tag scores.

2 Model

In this section, we describe the architecture of our shared task submission. An overview is given Figure 1.
Our system is based on the BLSTM-CNN model of Chiu and Nichols (2016), and, unless otherwise
noted, follows their training and tagging methodology, which the reader is referred to for more details.

2.1 Features
Feature embeddings for words are constructed by concatenating together the features listed here.

2.1.1 Word Embeddings
Word embeddings are critical for high-performance neural networks in NLP tasks (Turian et al., 2010).
In this paper, we compare six publicly available pre-trained word embeddings. The embeddings are de-
scribed in detail in Table 3. The neural embeddings of Collobert et al. (2011) were chosen because Chiu
and Nichols (2016) reported them to be the highest performing on both CoNLL-2003 and OntoNotes 5.0
datasets. To evaluate embeddings trained on data closer to the WNUT dataset, we also selected the GloVe
embeddings of Pennington et al. (2014), trained on both Web text and tweets, and word2vec embeddings
trained on Google News data (Mikolov et al., 2013) and on tweets (Godin et al., 2015).

Preliminary evaluation on the Dev1 data showed that GloVe 27B outperformed Collobert’s embed-
dings (see Table 5) and word2vec 3B, so they were used in our submission. Following Collobert et al.
(2011), we use lookup tables to extract embeddings and every word is lower cased before lookup.

2.1.2 CNN-extracted Character Features
Following Chiu and Nichols (2016), we use a CNN to extract features from 25 dim. character em-
beddings randomly-initialized from a uniform distribution between -0.5 and 0.5. To accommodate text
normalization, we added embeddings for the normalization symbols described in Section 2.2, namely
<url>, <user>, <smile>, <lolface>, <sadface>, <neutralface>, <heart>, <number>
and <hashtag>. All experiments were conducted with the same character embeddings.

2.1.3 Lexicon Features
Prior knowledge in the form of lexicons (also known as “gazetteers”) has been shown to be essential to
NER (Ratinov and Roth, 2009; Passos et al., 2014). This section describes how the lexicons employed
by our system were constructed. We designed the lexicon categories to be as close as possible to the
shared task NE classes by extracting corresponding descendants from the DBpedia ontology (Auer et al.,
2007). The lexicon used by our system contains 2.2 million entries over 9 different categories, as shown
in Table 1. While most of the lexicons were extracted using only one descendant from the ontology,
Misc, Music, and Product were constructed using multiple classes.
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Text Steve King on ObamaCare and Constitution Day
Company - - - - - - -

Location - S - - - - -
Misc - - - - - B E

Movie - - - - - - -
Music - - - - - - -

Person B E - - - - -
Product - - - - - - -

SportsTeam - - - - - - -
TVShow - - - - - - -

WNUT Gold B-person E-person O O O B-other E-other

Figure 2: Example of lexicon partial matching. The BIE tags indicate whether the token matched the
beginning, inside or end of a lexical entry, and the S tag indicate an exact match with a single entry.

Category Entries DBpedia Classes
Company 57,856 Company
Location 710,704 Place
Misc 132,055 Work + Event - Movie - TVShow
Movie 87,234 Movie
Music 74,816 Band + MusicalArtist
Person 1,074,384 Person
Product 37,820 Device + WNUT:Product
SportsTeam 28,155 SportsTeam
TVShow 29,272 TelevisionShow
Total 2,232,295

Table 1: Number of entries for each lexical cate-
gory and their corresponding DBpedia classes.

Hyper-parameter Final Range
Convolution width 5 [3, 9]
CNN output size 51 [15, 85]
LSTM state size 200 [100, 525]
LSTM layers 1 [1, 5]
Learning rate 0.0138 [10−3, 10−1.8]
Epochs 50 -
Dropout 0.56 [0.25, 0.75]
Mini-batch size 9 -

Table 2: Hyper-parameter search space and final
values used for all experiments.

First, in order to match entries such as festivals, holidays, songs, and more from the other class,
we constructed the Misc lexicon from Event and Work types in the DBpedia ontology excluding Movie
and TelevisionShow to avoid overlap with other classes. Second, in order to deal with inconsistencies
between person and musicartist classes as discussed in Section 3, the Music lexicon is a combi-
nation of the subtypes Band and MusicalArtist1. Finally, in order to maximize coverage, the Product
lexicon is a combination of the subtype Device from the DBpedia ontology and the lexicon product
distributed with WNUT dataset. Every other category is as described in Table 1.

To generate lexicon features, we apply the partial matching algorithm of Chiu and Nichols (2016)
to the input text, as shown in Figure 2. Each lexicon and match type (BIOES) is associated with a
randomly-initialized 5 dim. embedding. The embeddings for all lexicons are concatenated together to
produce the lexicon feature for each word in the input. To facilitate matching, all entries were stripped
of parentheses and tokenized with the Penn Treebank tokenization script.

2.1.4 Capitalization Feature
Following Chiu and Nichols (2016), we used different symbols for word-level capitalization feature each
assigned a randomly initialized embedding: allCaps, upperInitial, lowercase, mixedCaps
and noinfo. Similar symbols were used for character-level (upper case, lower case, punctuation, other).

2.2 Text Normalization
In order to maximize word embedding lookup coverage, we modify the publicly available GloVe prepro-
cessing script2 to normalize irregular spelling and replace special symbols with special embeddings:
<url>, <user>, <smile>, <lolface>, <sadface>, <neutralface>, <heart>, <number>
and <hashtag>. Repeated punctuation is also removed.

When processing hashtags, the hashtag body is split on capital letters, distributing the NE tag across
the resulting tokens. This helps increase word embedding coverage. Refer to Figure 1 for an example.

1Because MusicalArtist is a subtype of Person, both lexicons overlap, but experiments showed that the system still performed
better when MusicalArtist was in both lexicons.

2http://nlp.stanford.edu/projects/glove/preprocess-twitter.rb
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Word Data (Size) Dims. Vocab. Types Tokens
Embeddings - +norm. - +norm
Collobert RCV1 + Wikipedia (850M words) 50 130K 51.43% 75.31% 84.63% 82.18%
GloVe 6B Gigaword5 + Wikipedia (6B words) 50 400k 54.22% 82.71% 86.02% 84.17%
GloVe 27B Twitter microposts (27B words) 50 1.2M 57.47% 90.47% 83.67% 97.66%
GloVe 42B Common Crawl (42B words) 300 1.9M 62.14% 90.86% 89.09% 86.21%
word2vec 3B Google News (3B words) 300 3M 55.65% 86.00% 74.95% 72.62%
word2vec 400MT Twitter microposts (400M tweets) 400 3M 63.36% 91.08% 87.23% 85.79%

Table 3: A comparison of word embedding type and token coverage with and without text normalization.

Additionally, we attempted to correct the most obvious spelling irregularities where letters in a word
are repeated more than twice, consulting a dictionary to decide wether to keep one or two occurrences
of that repeated letter. When consulting the dictionary, we prioritized shorter matches when the repeated
letter appeared at the end of the word and longer matches otherwise.

For evaluation of the final system, we mapped the NE tags onto the original test data tokens, as shown
in Figure 1. Because of the tokenization, some of the original entries could end up with more than one
tag. In this case, we prioritize entity over non-entity tags, and keep the most frequent tag. Prioritizing
entity over non-entity tags was meant to improve recall, albeit at the expense of precision.

Initial experiments on Dev1 comparing word2vec 3B, Collobert, and GloVe 27B embeddings showed
that text normalization improved performance for word2vec 3B and GloVe 27B but not Collobert3 (Table
5); that word type coverage increased drastically for all embeddings; and that while word token coverage
greatly increased for GloVe 27B, it slightly decreased for other embeddings (see Table 4). We thus
selected GloVe 27B embeddings for our submission due to their superior performance and coverage.

2.3 Training and Inference
We follow the training and inference methodology of Chiu and Nichols (2016), training our neural net-
work to maximize the sentence-level log-likelihood from Collobert et al. (2011). Training is done by
mini-batch SGD with a fixed learning rate, and we apply dropout (Pham et al., 2014) to the output nodes.
All feature representations are “unfrozen” and allowed to be updated by the training algorithm.

We used the IOB tag scheme to annotate named entities. We also explored the BIOES tag scheme4,
as it was reported to outperform IOB (Ratinov and Roth, 2009), however, IOB outperformed BIOES in
preliminary experiments. We suspect that data sparsity prevented the model from learning meaningful
representations for the extra tags. Our shared task submission’s model trained in approximately 90
minutes and tags the test set in approximately 20 seconds, with memory usage peaking at 350MB5.

2.4 Hyper-parameter Optimization
To maximize performance, we perform hyper-parameter optimization using Optunity’s implementation
of particle swarm (Claesen et al., 2014), as there is some evidence that it is more efficient than random
search (Clerc and Kennedy, 2002). The hyper-parameters of our model and final selected values are
given in Table 2. We evaluated 800 hyper-parameter settings in total. The search used 5-fold validation
to maximize the influence of the entire dataset, as it was small, and we kept the best performing setting.

3 Evaluation

The WNUT 2016 dataset consists of user-generated tweets tagged with 10 types of named enti-
ties: company, facility, geo-loc, movie, musicartist, other, person, product,
sportsteam, and tvshow. Table 4 shows the train, dev and test set data splits. Compared to the
well-researched CoNLL-2003 (Tjong Kim Sang and De Meulder, 2003) or the OntoNotes 5.0 dataset
(Pradhan et al., 2013), the WNUT dataset contains a lot of spelling irregularities and special symbols.
For example, Christmas written as xmas, Guys written as Gaiiissss, emoticons such as “:-)”, “:(”, “<3”

3Neither difference was statistically significant.
4BIOES stands for Begin, Inside, Outside, End, Single, indicating the position of the token in the entity.
5Our models were trained on a 2.7 GHz 12-Core Intel Xeon E5 CPU, with a maximum of 4 cores being used at once.
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Train Dev1 Dev2 Test
Sentences 1,795 599 420 3,850

Tokens 34,899 11,570 6,790 61,908
Entities 1,140 356 272 3,473

Table 4: The WNUT 2016 dataset.

Settings Dev1
Prec. Recall F1

Collobert 56.92 47.33 51.63 (±2.11)
Collobert + norm 55.80 45.84 50.24 (±1.52)
GloVe 27B 54.89 49.07 51.78 (±1.91)
GloVe 27B + norm 54.41 49.86 51.96 (±1.25)
word2vec 3B 54.21 46.74 50.08 (±2.98)
word2vec 3B + norm 54.94 47.44 50.81 (±2.42)

Table 5: Dev1 preliminary evaluation.

Model Test
Prec. Recall F1 Rank*

CambridgeLTL 60.77 46.07 52.41 1
Talos 58.51 38.12 46.16 2
akora 51.70 39.48 44.77 3
NTNU 53.19 32.13 40.06 4
ASU 40.58 37.58 39.02 5
Submitted model 54.97 28.16 37.24 6
*Fixed model 52.04 39.63 44.97 3
**Best model 54.02 42.06 47.24 2

Table 6: F1-scores for our submitted, fixed, and
best 10 tag models. Rank* is the retroactive rank.

Settings Test
Prec. Recall F1

Collobert 50.52 38.00 43.37 (±0.47)
+ norm 51.44 38.13 43.73 (±0.66)
+ lex 51.50 39.73 44.82 (±0.79)
+ norm + lex 51.72 40.46 45.39 (±1.15)
GloVe 6B 50.26 38.90 43.84 (±1.08)
+ norm 52.21 38.10 43.96 (±1.19)
+ lex 51.14 38.95 44.19 (±0.63)
+ norm + lex 51.73 38.73 44.24 (±0.44)
GloVe 27B 48.44 38.44 42.86 (±1.06)
+ norm 49.35 39.66 43.92 (±0.99)
+ lex 51.13 39.12 44.31 (±1.14)
*+ norm + lex 52.04 39.63 44.97 (±0.65)
GloVe 42B 51.81 40.87 45.59 (±0.71)
+ norm 52.91 41.60 46.53 (±0.84)
+ lex 52.27 41.50 46.22 (±0.93)
**+ norm + lex 54.02 42.06 47.24 (±0.70)
word2vec 3B 51.71 38.56 44.11 (±0.47)
+ norm 53.92 37.82 44.39 (±1.28)
+ lex 51.37 39.01 44.31 (±0.68)
+ norm + lex 52.64 39.53 45.10 (±0.91)
word2vec 400MT 50.62 40.92 45.22 (±0.76)
+ norm 51.95 40.41 45.45 (±0.76)
+ lex 53.23 41.45 46.59 (±0.92)
+ norm + lex 53.87 41.78 47.03 (±0.97)

Table 7: F1-scores with different word embed-
dings evaluated on test set with final settings.

and so on are commonplace. Such examples illustrate the diversity of the dataset’s vocabulary, motivating
us to perform text normalization as described in Section 2.2.

Some inconsistencies were found between Dev2 and the other data. The most obvious one is where
singers previously tagged as person in Train were tagged as musicartist in Dev2. This is easily
verifiable by comparing tags for the entity Justin Bieber in those datasets. These tag inconsistencies
make it difficult to learn a robust model for those classes, so we manually retagged all person entities,
keeping the most precise tag (i.e. tagging all singers as musicartist). We did so by searching for
every person entity with Google and used the surrounding context to determine the most precise tag,
replacing a total of 82 person entities out of 664. Other local inconsistencies were not corrected as not
enough evidence was found. In Section 4.3.2 we explore inconsistencies in common tagging errors.

For each experiment, we report the average for precision and recall, and the average and standard devi-
ation for f1-score for 10 successful trials. Minor inconsistencies in reported f1-scores and precision and
recall result from those scores being averaged independently. Statistical significance is calculated using
the Wilcoxon rank sum test, due to its robustness against small sample sizes with unknown distributions.

4 Results and Discussion

In this section, we (1) compare the performance of different word embeddings, (2) analyze the influence
of our lexicon over the performance of our final model, and (3) perform error analysis of various aspects
of both our system and the dataset. Table 7 shows the final results for different settings. Following Cherry
et al. (2015), we compare our system settings to other shared task entries (Strauss et al., 2016) and present
their retroactive ranks. While our submitted system uses GloVe embeddings trained on Twitter (GloVe
27B), we found that GloVe embeddings trained on Common Crawl (GloVe 42B) with text normalization
and lexicons was our best performing setting, achieving a retroactive rank of second place.

4.1 Word Embeddings
Table 7 shows that GloVe embeddings trained on Common Crawl (GloVe 42B) outperformed all other
embeddings by over 2 f1 points. Comparing Tables 4 and 7, we see that word type coverage is correlated
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O 50	   34	   66	   1	   19	   95	   61	   40	   27	   2	   32207	  

Figure 3: Left: fraction of named entities of each class matched by entries in each lexicon category.
White = higher fraction. Right: entity-level confusion matrix with outliers highlighted.

with performance for GloVe and word2vec embeddings6. Note that word type coverage appears to be
more important than token coverage. It could be the case that NEs are more likely to contain low-
frequency words, necessitating a large token vocabulary. GloVe 42B’s increased performance over GloVe
27B could be explained thus, though it is also possible that its larger, more diverse dataset is responsible.

It is interesting to point out that Collobert was able to outperform embeddings trained on much larger
datasets with much larger vocabularies. While all embeddings improved with text normalization, only
GloVe 27B and 42B got statistically significant7 increases.

Finally, in order to save time on training, we reduced the vocabulary of the word embedding lookup
table to contain only words from the training data. This allowed us to reduce the network’s training time
by half and reduce its memory usage by over 90%. However, due to a bug, words outside of the train and
dev set vocabulary were treated as unknown, considerably degrading our system’s performance. When
the vocabulary bug is fixed, our submission setting achieves performance with a retroactive rank of third
place. See Table 6 for a comparison to other shared task entries taken from Strauss et al. (2016).

4.2 Lexicon Features

Usage of lexicons greatly improved performance, providing a statistically significant increase in f1-score
for Collobert8, GloVe 27B9, GloVe 42B10, and word2vec-400MT11 embeddings (see Tables 7 and 8).

Figure 3 (left) shows a heat map of lexical coverage. As many of the cells along the diagonal are
bright, it shows that we were able to produce lexicons for many categories with high coverage and
low ambiguity. However, there are some notable exceptions, such as the Location lexicon showing
high coverage on both facility and geo-loc, and both Music and Person lexicons showing
high coverage on musicartist. This lexical overlap likely contributes to misclassification errors; the
confusion matrix in Figure 3 (right) shows that misclassifications between facility and geo-loc
and musicartist and person are quite frequent. Some lexical overlap makes sense considering the
fact that sports teams will often include city names such as Montreal Canadiens or Philadelphia Eagles.

Table 8 compares our fixed shared task submission’s entity-level f1-scores with and without lexicons.
These results show that while many lexicons were effective – particularly company, geo-loc, and

6 It is surprising that word2vec-400MT underperforms Glove 42B, despite its superior word type coverage, but this could
be due to differences in training algorithm, preprocessing (word2vec-400MT used Ritter et al. (2011)’s Twitter NLP Tools), or
casing (word2vec-400MT preserved case, while Glove 42B did not). We also evaluated 300 dim. GloVe embeddings trained on
840B words of Common Crawl data with a vocabulary size of 2.2M, however, they underperformed the GloVe 42B embeddings.

7Wilcoxon rank sum test, p < 0.05.
8Wilcoxon rank sum test, p < 0.005.
9Wilcoxon rank sum test, p < 0.05.

10Wilcoxon rank sum test, p < 0.05.
11Wilcoxon rank sum test, p < 0.01.
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NE com. fac. geo-loc movie musicartist other person product sportsteam tvshow
− lex 38.94 29.00 61.16 3.43 28.68 26.54 55.75 8.48 35.34 10.77
+ lex 45.74 29.87 64.13 4.18 23.06 27.84 55.01 9.04 35.20 9.76

∆ +6.80 +0.87 +2.97 +0.75 −5.63 +1.30 −0.74 +0.57 −0.13 −1.01

Table 8: Per-category comparison of our fixed shared task submission settings with and without lexicons.

B-sports
(1) Don’t be biased Argentina destroyed them . . .

B-geo-loc
O B-sports I-sports

(2) #SunDevils Sun Devils struggle to beat FCS . . .
O O O
O O B-company

(3) #Fedex , #microsoft , #Twitter . . .
O O O

Figure 4: Examples of (1) contextual ambiguity (2) tagging inconsistencies and (3) hashtags inconsis-
tencies. The upper tag is gold annotation. The lower tag is our system’s prediction.

other – the lexicons MusicArtist, Person, SportsTeam, and TVShow were detrimental to
NER performance. As noted above, the MusicArtist and Person lexicons had substantial overlap,
most likely contributing to poor performance.

4.3 Error Analysis
In this section, we describe different sources of errors from a subsample of mistagged test set entities.

4.3.1 Unseen Entities
One of the biggest source of errors when trying to tag noisy Web-text is the amount of unseen entities
the system will face. In the WNUT dataset, roughly 40% of the entities present in the test set are not in
the train or dev datasets. This underscores the importance of high-coverage word embeddings, lexicon
construction, and lexical matching, since the tagger has not encountered almost half of the entities.

4.3.2 Contextual Ambiguity
With fine-grained entities such as the ones defined for this task, our system tends to make errors due
to confusion between entity classes. Figure 3 shows the confusion matrix when the system is evaluated
over the test dataset. One common error occurs between geo-loc and other classes, more specifically
company, facility and sportsteam. We extracted 50 examples for each type of confusion
and found out that place names were mostly being tagged as geo-loc even though context indicates
otherwise. Figure 4 shows a few examples.

Another important class ambiguity is between musicartist and person. In a subsample of 64
examples, 49 were tagged as person. Furthermore, the entity matched both entity’s lexicons in 59%
of the cases. This is also supported by the confusion matrix where music artists get tagged as person
more than twice as often as they get tagged correctly. This contextual ambiguity seems to have led to
a few tagging inconsistencies that could also explain lower overall performance. Either from train to
test set or within the same set, entities sometimes ended up with multiple tags or no tags at all. Such
examples are: singers like Justin Bieber being tagged as person in the training set and musicartist
in the test set; devices such as BlackBerry being tagged either as company or product. Some of these
inconsistencies are understandable because most of the time more than one tag could fit12. Refining
lexicons to maximize coverage while minimizing ambiguity remains an essential area of future work.

4.3.3 Hashtags
In tweets, hashtags are omnipresent. They are a way to highlight relevant keywords or phrases making
it easier to categorize the tweets they are in. It then becomes important to be able to retrieve important

12It could also be explained by the fact that the dataset consists of data constructed with different time periods and annotators.
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information from those relevant keywords. From the subsample we observed that most entities containing
a hashtag were not tagged at all. This can be explained by the fact that only 4% of hashtags are part of
entities in the training set making our network biased against tagging hashtags. This likely lead to more
errors on the test set where more than 15% of hashtags are part of entities.

5 Related Research

Named entity recognition is a task with a long history, dating back to MUC-7 (Chinchor and Robinson,
1997). In this section, we describe the NER research that influenced our system and give an overview of
the work on NER for Twitter. For a more detailed survey, see (Chiu and Nichols, 2016).

Most recent approaches to NER have been characterized by the use of CRF, SVM, and perceptron
models, where performance is heavily dependent on feature engineering. Ratinov and Roth (2009)
used non-local features, a gazetteer extracted from Wikipedia, and Brown-cluster-like word represen-
tations. Lin and Wu (2009) used phrase features obtained by performing k-means clustering over a
private database of search engine query logs in place of a lexicon. Passos et al. (2014) proposed a model
that infused word embeddings with lexical knowledge. In order to combat the problem of sparse features,
Suzuki et al. (2011) performed feature reduction with large-scale unlabelled data.

Recently, the state-of-the-art for NER neural networks have overtaken other approaches to NER. Most
approaches build on the pioneering work of Collobert et al. (2011), which showed that word embeddings
could be employed in a deep FFNN to achieve near state-of-the-art results on POS tagging, chunk-
ing, NER, and SRL. Santos et al. (2015) augmented the architecture of Collobert et al. (2011) with
character-level CNNs, reporting improved performance on Spanish and Portuguese NER. Huang et al.
(2015) employed BLSTMs in place of FFNNs for the POS-tagging, chunking, and NER tasks, but they
employed heavy feature engineering instead of using a CNN to automatically extract character-level
features. Lample et al. (2016) proposed LSTM-CRF and Stack-LSTM architectures for NER.

The earliest work on NER for Twitter, used a CRF model with global features from tweet clusters to
conduct NER with the MUC-7 4 class task definition (Liu et al., 2011). Ritter et al. (2011) developed
a suite of NLP tools explicitly for Twitter and expanded the task to the 10 class definition used in the
WNUT shared tasks. A key difference between NER for Twitter and conventional NER is that the former
also considers peripheral tasks such as named entity tokenization (Li et al., 2012), normalization (Liu et
al., 2012), and linking (Guo et al., 2013; Yamada et al., 2015). The WNUT 2015 Shared Task included
text normalization and named entity tokenization and detection tasks (Baldwin et al., 2015), with most
systems using machine learning methods like CRF together with a variety of features including lexicons,
orthographic features, and distributional information. In contrast with conventional NER, there was only
one neural network entry (Godin et al., 2015), and most systems tended to prefer Brown clusters to word
embeddings. The state of the art at WNUT 2015 used a cascaded model of entity tokenization, followed
by linking to knowledge bases, and, finally, classification with random forests (Yamada et al., 2015).

Our system adopts the architecture of Chiu and Nichols (2016), which combined BLSTMs to maxi-
mize context over the tagged word sequence and word-level CNNs to automatically generate character-
level features with a partial-matching lexicon to achieve the state-of-the-art for NER on both CoNLL
2003 and OntoNotes datasets. Our system can be viewed as an investigation into how well state-of-the-
art neural approaches adapt to the challenges of NER on noisy Web data.

6 Conclusion

In this paper, we described the DeepNNNER entry to the WNUT 2016 Shared Task #2: Named Entity
Recognition in Twitter, which adopted the BLSTM-CNN model of Chiu and Nichols (2016). Extensive
evaluation showed that high word type coverage for word embeddings is crucial to NER performance,
likely due to rare words in entities, and that both text normalization and partial matching on lexicons con-
structed from DBpedia (Auer et al., 2007) contribute significantly to performance. Our best-performing
system uses text normalization, lexicon partial matching, and the GloVe word embeddings of Penning-
ton et al. (2014) trained on 42B words of Common Crawl data, and it achieves a maximum F1-score of
47.24, performance surpassing that of the shared task’s second-ranked system.
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Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch. The Journal of Machine Learning Research, 12:2493–2537.
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