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Abstract

Named entity recognition (NER) in social media (e.g., Twitter) is a challenging task due to the
noisy nature of text. As part of our participation in the W-NUT 2016 Named Entity Recognition
Shared Task, we proposed an unsupervised learning approach using deep neural networks and
leverage a knowledge base (i.e., DBpedia) to bootstrap sparse entity types with weakly labelled
data. To further boost the performance, we employed a more sophisticated tagging scheme and
applied dropout as a regularisation technique in order to reduce overfitting. Even without hand-
crafting linguistic features nor leveraging any of the W-NUT-provided gazetteers, we obtained
robust performance with our approach, which ranked third amongst all shared task participants
according to the official evaluation on a gold standard named entity-annotated corpus of 3,856
tweets.

1 Introduction

Named entity recognition (NER) is one of the most fundamental natural language processing (NLP)
tasks that is central to understanding unstructured, textual data. Popular approaches (Chieu and Ng,
2002; Florian et al., 2003; Ratinov and Roth, 2009; Luo et al., 2015) mainly rely on hand-crafted fea-
tures and gazetteers which require knowledge about the domain. Recently, there has been a surge in terms
of interest in applying deep learning techniques to NLP tasks. These methods, together with substantial
amount of annotated data, can learn features automatically and have been reported to outperform tradi-
tional methods on certain NLP tasks (Ma and Hovy, 2016; Lample et al., 2016; Chiu and Nichols, 2016).
However, in spite of the perceived success of deep learning methods particularly in NER in newswire
(Ma and Hovy, 2016), performance on social media content, particularly that from Twitter, has been
lagging behind (Baldwin et al., 2015).

There are two state-of-the-art deep learning methods for newswire NER, namely, those proposed by
Chiu and Nichols (2016) and Ma and Hovy (2016). Considering that the former requires hand-crafted
features (e.g., word matches against gazetteers) and yet obtains only a small boost in performance over
the latter which does not rely on any such features, we took the approach of Ma and Hovy (2016) and
applied it on microblog posts from the Twitter platform, i.e., tweets. Based on the results of our initial
experiments, we observed suboptimal performance relative to that on newswire. Informed by the error
analysis that we carried out, we employed a distant supervision method exploiting an external lexical
resource, i.e., DBpedia (Daiber et al., 2013), in order to generate weakly labelled data for low-frequency
named entity types. We also investigated the effect of using different token-level tagging schemes and
confirmed that improved performance can be obtained by applying the finer-grained BIOES scheme
rather than the more popularly used BIO convention. Furthermore, we explored the use of generic
placeholders to address out-of-embedding-vocabulary (OOEV) words, although this approach did not
lead to better performance.

2 Related Work

Named entity recognition—the automatic demarcation of named mentions within text and their classifi-
cation according to predefined semantic types—is a fundamental NLP task that has attracted the attention
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of many researchers. Several efforts (Chieu and Ng, 2002; Florian et al., 2003; Ratinov and Roth, 2009),
tackle this problem by hand-crafting linguistic features and presenting them to a machine learning al-
gorithm, which will then discriminate between various semantic types based on those features. This
particular approach, however, is usually done ad hoc making it very tedious to adapt features to other do-
mains. Recently, extensions to this approach have been introduced (Godin et al., 2015; Cherry and Guo,
2015; Toh et al., 2015) by considering word embeddings as sources of features for classification. Other
studies (Luo et al., 2015; Yamada123 et al., 2015) combined this machine learning-based approach with
entity linking methods which exploit knowledge bases (e.g., Wikipedia) to detect named mentions. With
the NLP research community’s continuously surging interest in deep learning, approaches based on deep
neural networks have also been applied to NER. While they take away the burden that comes with hand-
crafting linguistic features, they require huge amounts of data. Nevertheless, they have been proven to be
effective for the NER task (Godin et al., 2015; Chiu and Nichols, 2016; Ma and Hovy, 2016; Lample et
al., 2016). For instance, state-of-the-art NER systems for newswire were built upon deep learning-based
approaches (Ma and Hovy, 2016; Chiu and Nichols, 2016). It has been shown, however, that even such
state-of-the-art methods tend to underperform when applied to other domains, particularly on social me-
dia content, e.g., tweets (Baldwin et al., 2015). Challenges in this domain include noise inherent in the
data, the many new terms—neologisms—introduced in social media over time, and changes in linguistic
conventions in general, also known as language drift (Dredze et al., 2010; Ritter et al., 2011; Eisenstein,
2013; Fromreide et al., 2014).

In this paper, we describe our methods addressing the above-mentioned challenges in the context
of the 2016 Named Entity Recognition in Twitter Task (Strauss et al., 2016) organised as part of the
Second Workshop on Noisy User-generated Text (W-NUT). For our contribution to the said shared task,
we combined deep learning-based approaches with distant supervision methods for generating weakly
labelled data, and further optimised performance by exploring the use of different tagging schemes and
word embeddings.

3 Methodology

We cast the NER task as a sequence labelling problem: every tweet is a sequence of tokens, each of
which is automatically assigned a label (or tag) that is indicative of its membership to a semantic type
or category. In learning and applying token labels, two different tagging schemes were compared in
order to confirm previously reported observations that employing more sophisticated tagging schemes
leads to better predictions (Ratinov and Roth, 2009; Dai et al., 2015). According to the popular begin-
inside-outside (BIO) scheme, each token is tagged as any of ‘B’, ‘I’ or ‘O’ depending on whether it is
at the beginning, inside or outside a named entity, respectively. The more fine-grained BIOES scheme,
however, additionally makes use of ‘E’ and ‘S’ to also distinguish tokens at the end and those comprising
single-token entities.

Approaches to sequence labelling based on the conditional random fields (CRF) algorithm are known
to demonstrate strong performance (McCallum and Li, 2003; Leaman et al., 2008; Finkel and Man-
ning, 2009). CRFs find the most probable label sequence given a sequence of tokens encoded using
features, e.g., surface forms, lemma, part-of-speech tags, surrounding tokens, morphology (Sang and
Veenstra, 1999). Meanwhile, convolutional neural networks (CNNs) are sparse feed-forward neural net-
works which have been shown to effectively extract morphological features such as word prefixes and
suffixes (Chiu and Nichols, 2016). One can thus explore the combination of the ability of CRFs to model
relations between labels of tokens in a tweet, and the effectiveness of CNNs to extract morphological
features of words. CNNs, however, suffer from one drawback, i.e., failure to capture the contextual in-
formation surrounding a word. To alleviate this issue, we instead employed recurrent neural networks
(RNNs) (Rumelhart et al., 1988). RNN models make use of the sequential information found in struc-
tured input (e.g., in a sentence). It is called recurrent because it performs the same computation for
every element in a sequence with inputs as the only difference. RNN models use the backpropagation
algorithm throughout all of the time steps (i.e., from the current word to the nth preceding word). During
backpropagation, the gradient is computed, which is the measure of how much the cost (i.e., the differ-
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ence between the expected and the actual value) changes with a change in weight or bias value. The
gradient is computed from the output layer (i.e., the current word) and is propagated back to the first
layer (i.e., the nth preceding word). Since the gradient at a particular point (e.g., current/output layer)
is a product of the gradients up to that point (e.g., from the first up to the current layer), the product
becomes much smaller or bigger depending on the gradient value. This is called the vanishing/exploding
gradient problem common in deep backpropagation investigated more deeply in Bengio et al. (1994) and
Pascanu et al. (2013). To remedy this problem, we use a variant of RNNs known as the Long-Short-Term
Memory (LSTM) network (Hochreiter and Schmidhuber, 1997). LSTM addresses the shortcomings of
vanilla RNNs by allowing the network to capture information for an extended number of time steps. Fur-
thermore, we incorporate the findings of Dyer et al. (2015) that bi-directional LSTM (BLSTM) provides
more benefits since it allows access to both the past and future contexts, i.e., m words to each of the left
and right sides of a given word, where m is the window size.

3.1 Neural Network Architecture
The input to the network is a concatenation of character representations of words extracted from a con-
volutional neural network and word embeddings, which will be described in Section 3.3. The inputs are
fed into a bi-directional LSTM (BLSTM) and the outputs are concatenated and fed into the CRF layer to
jointly decode the best label sequence. For a schematic diagram depicting this neural network architec-
ture, we refer the reader to the work by Ma and Hovy (2016), who first proposed this method for NER in
newswire. In our work, the same architecture is applied to the task of NER in tweets.

We also sought to tune the hyperparameters of the neural network, specifically, learning rate and
dropout. However, in the interest of time, only a local search within a small interval was carried out,
setting the other parameters to arbitrarily determined fixed values. Learning rate controls the step size in
gradient descent optimisation: a very small learning rate could lead to longer training time, and poten-
tially to being trapped in a local minimum. Meanwhile, choosing too big a learning rate could lead to
overshooting the global optimum. Hence, one way to determine the optimal learning rate is to observe
the performance based on a range of different learning rates and selecting the one yielding the maximum
performance. Meanwhile, tuning the other important hyperparameter, dropout, has been found to be
useful to prevent overfitting. Serving as a means for regularisation, dropout disables units in the network
(along with their connections) during training. It is based on a value p which indicates the probability
that a unit is retained, typically determined using a validation data set. Dropout thus reduces the problem
of overfitting and at the same time, provides a way for exploring an exponential number of different
neural network architectures efficiently (Srivastava et al., 2014).

3.2 Distant supervision for augmenting training data
We carried out an analysis of the corpus that was provided by the task organisers to participants con-
taining 2,394 and 1,000 tweets in the training and development sets, respectively. The training set is
composed of tweets collected in 2010 while those in the development set were collected between 2014
and 2015 (Baldwin et al., 2015). Examining the training set, we observed that whilst 3.6% of the tweets
are retweets, 74.2% of the tokens are unique. This same pattern was also observed in the development
set: it contains a similar proportion of unique tokens (74.6%), although with much fewer retweets (0.4%).
Prepositions, punctuations, articles and pronouns account for many of the repeated tokens in both data
sets.

In terms of named entity type distribution, around 96% in each data set correspond to non-named
entity tokens. The remaining 4% were distributed unevenly across the 10 entity categories. Based on
our frequency analysis, shown in Table 1, we observed that the person entity type is the most prevalent
in both the training set (449 out of 1,496 entities or 30%) and development set (171 out of 661 entities
or 26%) while both tvshow and movie entity types were consistently the most sparse entities in both the
training set (both 34 out of 1491 entities or 2%) and development set (2 out of 661 entities or 0.3%, 15
out of 661 entities or 2%), respectively.

To mitigate the data sparsity of some entity types as observed in the data set, we sought to increase
their number of annotated samples. To this end, we leveraged DBpedia Spotlight (Daiber et al., 2013), a
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Training Set (1,496 entities) Development Set (661 entities)
Entity Type Count Percentage Entity Type Count Percentage
person 449 30.01 person 171 25.87
geo-loc 276 18.45 other 132 19.97
other 225 15.04 geo-loc 116 17.55
company 171 11.43 sportsteam 70 10.59
facility 104 6.95 musicartist 41 6.20
product 97 6.48 company 39 5.90
musicartist 55 3.68 facility 38 5.75
sportsteam 51 3.41 product 37 5.60
movie 34 2.27 movie 15 2.27
tvshow 34 2.27 tvshow 2 0.30

Table 1: Entity type distribution in training and development sets

Entity Type DBpedia Categories
company Website, Company, Software, BroadcastNetwork, RadioStation
facility EducationInstitution, InternationalOrganisation, PublicTransitSystem, Archi-

tecturalStructure, SportsClub
geo-loc PopulatedPlace, WorldHeritageSite
other Non-ProfitOrganisation, Event, SportsLeague, PoliticalParty, MilitaryUnit
movie Film
musicartist MusicArtist
person Person, Athlete, Celebrity, Cleric, Coach, BeautyQueen, BusinessPerson,

Criminal, Economist, Engineer, FictionalCharacter, Journalist, Judge, Lawyer,
Model, Monarch, MovieDirector, Noble, OrganisationMember, Politician,
PoliticianSpouse, Royalty, Scientist, SportsManager, TelevisionDirector, Tele-
visionPersonality, Writer, OfficeHolder

product VideoGame, Device, MeanOfTransportation, Food, LineOfFashion, Program-
mingLanguage

tvshow TelevisionShow, TelevisionSeason, TelevisionEpisode
sportsteam SportsTeam

Table 2: Proposed mapping between W-NUT entity types and DBpedia categories

tool for linking mentions in text to DBpedia entries, which in our case was employed to weakly annotate
our own collection of tweets, gathered between July and August 2016. The tool can be configured
in order to define the resulting entity matches. For example, there are configuration parameters, e.g.,
confidence and contextual score, which can be specified to control the quality of the output (Mendes et
al., 2011). Confidence is a parameter for disambiguation, ranging from 0 to 1, which takes into account
factors such as topical pertinence and contextual ambiguity. The confidence threshold setting instructs
the tool to exclude low-ranking annotations at the risk of losing potentially correct ones. For example, a
confidence level of 0.7 will eliminate 70% of low-ranking candidates. Meanwhile, contextual score is the
cosine similarity between term vectors weighted by the Term Frequency Inverse Candidate Frequency
(TF*ICF) measure introduced by Mendes et al. (2011). ICF is based on the idea that the discriminative
power of a word is inversely proportional to the number of DBpedia resources it is associated with. The
above parameters provide the tool with a way to rank the list of candidates.

In applying DBpedia Spotlight on our own collection of tweets, we initially set the confidence and
contextual score parameters to 0.7. Fuzzy string matching heuristics were also employed, to enable
the matching of lexical variants in tweets (e.g., those which differ in length by at most two characters)
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Pre-trained Word
Embeddings

Description Text Type

Twitter 2B tweets, 27B tokens, 1.2M vo-
cabulary words, uncased, 100 di-
mensions

Tweets

Common Crawl 840B tokens, 2.2M vocabulary
words, cased, 300 dimensions

Web Pages

Wikipedia 2014 +
Gigaword 5

6B tokens, 400K vocabulary
words, uncased, 100 dimensions

Wiki pages + newswire

Table 3: Description of word embeddings pre-trained using GloVe

against DBpedia entries. The tool assigns matched entities with semantic labels that come from DBpe-
dia’s ontology, which defines a hierarchy of types. In order to categorise these entities according to the
shared task’s categories of interest, we defined the mappings shown in Table 2, informed by the anno-
tation guidelines provided by the shared task organisers. For many entities, DBpedia Spotlight provides
multiple hierarchical labels. For example, the entity “Justin Bieber” is labelled by the tool as both Person
and MusicArtist, which map to W-NUT’s person and musicartist, respectively. In such cases, we take the
most specific entity type (e.g., musicartist) as the final label. Furthermore, if an entity match x is sub-
sumed by another match y, we disregard x and retain the longer matching entity y with its corresponding
type. For example, if a tweet contains three entity matches such as “New York USA”, “New York” and
“USA”, we disregard the two shorter entity matches (“New York”, “USA”) and choose the entity with
the longer span of tokens (“New York USA”).

The above techniques, however, did not result in better performance. With the threshold of 0.7, which
turned out to be too low, even named entities that DBpedia Spotlight was not very confident about were
included in the training set, thus introducing noise. This corresponds to token sequences which were
recognised as entities of a certain type when in reality they are actually non-entities or fall under a
different entity type. This noise is compounded as the bi-directional LSTM models we employed made
use of the context surrounding the wrongly recognised entities to learn the segmentation and classification
tasks. To resolve these issues, we increased the required level of confidence in weakly annotated named
entity types, from 0.7 to 0.9. Furthermore, we added weakly annotated data only to the entity types for
which our models have obtained poor performance based on our initial experiment, namely: product,
movie, musicartist, tvshow. In this way, we avoid adding unexpected noise with respect to the other
named entity types.

3.3 Exploiting different types of word embeddings

Word embeddings are n-dimensional continuous-valued representations of a word where n is an arbitrar-
ily chosen number of dimensions. In contrast to one-hot representations whose number of dimensions
would be equal to the vocabulary size V, distributed representations such as word embeddings represent a
word in n dimensions where n is much smaller than V (i.e., n� V). Aside from avoiding sparse represen-
tations, word embeddings are shown to capture a word’s semantic and syntactic information (Mikolov
et al., 2013). Specifically, since word embeddings are generated based on co-occurrence information,
co-occurring words share the same context and are thus expected to have similar values.

There are a number of implementations for generating word embeddings such as word2vec (Mikolov
et al., 2013) and GloVe (Pennington et al., 2014). Pennington et al. (2014) have shown that GloVe
produces better results over word2vec (i.e., using CBOW and Skip-gram models) on word similarity
and named entity recognition tasks. They also provided pre-trained word embeddings generated based
on three different corpora: Common Crawl, Twitter, and Wikipedia 2014+Gigaword 5. Based on the
comparison presented in Table 3, it can be observed that Common Crawl has the largest vocabulary size.

Word embeddings have been employed as features for the NER task (Baldwin et al., 2015). As our
study is based on unsupervised learning, i.e., neural networks, in which the feature set is learned auto-
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Word Wikipedia+Gigaword Twitter Common Crawl
IV 64.66 (9,620) 65.88 (9,802) 70.65 (10,512)
OOEV 35.34 (5,258) 34.12 (5,076) 29.35 (4,366)

Table 4: Percentage distribution of IV and OOEV words in the pre-trained embeddings

Category Percentage
@username 39.31
http://url 21.19
words 19.87
#hashtags 12.15
punctuations 5.43
numbers 2.19

Table 5: OOEV word categories and their distribution

matically, we instead use word embeddings as representations of input words. In this paper, we observe
the effect on NER performance, of using each of the three different pre-trained word embeddings.

3.4 Representing Out-of-Embedding Vocabulary (OOEV) Words

Words for which there are no embeddings, i.e., out-of-embedding vocabulary (OOEV) words, commonly
occur in the given data set, accounting for around 30% of all words. Table 4 presents the frequency of
words with embeddings, i.e., in-vocabulary (IV) words, and OOEV words in the different pre-trained
embeddings. We analysed the most frequently occurring OOEV words and categorised them, as shown
in Table 5. We observed that the most prevalent type of OOEV words correspond to Twitter usernames
of the pattern “@username” as well as URLs, comprising around 60% of the words with no embedding
values. Out of the OOEV words, only 10% are named entities, with the rest accounting for context
words. Table 6 shows the percentage of named entities with word embeddings (i.e., IV words) and the
percentage OOEV words in the training and test sets, respectively.

One way of representing OOEV words is by randomly initialising embeddings with values uniformly
sampled from a specified range [−√

3/dim, +
√

3/dim] where dim is the dimension of embeddings (He
et al., 2015). In this work, we compare that method with the use of placeholder values to replace OOEV
words, e.g., by substituting rare words with ‘UNK’ (Nam et al., 2016). We applied this on the following
OOEV categories: usernames, URLs, punctuations, numbers and hashtags. Furthermore, to account
for OOEV words which are potentially lexical variants of IV words (e.g., ‘gud’ vs ‘good’, ‘#Twitter’
vs ‘Twitter’), we employed string similarity measures based on the edit distance metric (Contractor et
al., 2010) to find the IV word most similar to a given OOEV word. This technique was applied on
hashtags, punctuations and words. Whilst GloVe comes with its own script for normalisation1, we chose
to implement our own in order to incorporate string similarity measures.

4 Results and Discussion

In this section, we present the results of our evaluation of the methods described above. We investigated
the impact on performance of employing different tagging schemes and word embeddings, as well as the
substitution of OOEV words with placeholders. We then analysed the extent to which the use of different
hyperparameter values and weakly labelled named entities, contributed to NER performance.

As a first step, a decision was made on the data sets to be used for training our models and subsequently
evaluating performance. Noting that the shared task-provided training and development data came from
disjoint time periods, i.e., 2010 and 2014-2015 respectively, we were interested in determining whether
the use of a more temporally heterogeneous set of tweets for training our models could lead to better
results. To this end, we formed our own training and development data partitions out of the original data

1http://nlp.stanford.edu/projects/glove/preprocess-twitter.rb
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Data Set Total Named Entities IV OOEV
Training Set 80.83 (2,902) 93.34 (2,709) 6.06 (193)
Test Set 19.17 (688) 95.49 (657) 4.5 (31)

Table 6: Percentage distribution of named entities with IV and OOEV words

Tagging Scheme Precision Recall F-score
BIO 61.76 53.17 57.14
BIOES 60.99 57.25 59.06

Table 7: Comparison of performance when using different tagging schemes

sets. Firstly, we combined the tweets from the provided training and development sets. The resulting
collection was then partitioned into two: 80% of the tweets became part of a new training set while the
remaining 20% formed a new development set. We then ran an experiment to compare the performance
obtained when using this new partition, against using the original training and development sets. Our
results show that utilising our own data partition yields better performance. This confirms previous
observations by Fromreide et al. (2014) that language drift is prevalent in tweets: models trained on
relatively older tweets (i.e., from 2010) perform suboptimally on more recent ones (i.e., from 2014-
2015). Our own training and development data partitions were thus used in the rest of the experiments
described below, together with the following hyperparameter values for the neural network: dropout =
0.6, learning = 0.013 and number of epochs = 63. The value for each hyperparameter was determined by
comparing performance across a small number of options: {0.3, 0.4, 0.5, 0.6, 0.7} for dropout, {0.01,
0.013, 0.015, 0.017, 0.02} for learning rate and values within the interval [1, 1500] for number of epochs.

Table 7 compares the performance obtained by employing the BIO tagging convention versus that
using the finer-grained BIOES tagging scheme. As in previous studies (Ratinov and Roth, 2009; Dai et
al., 2015), our results show that adopting the BIOES scheme leads to better performance. This can be
attributed to the additional information obtained by distinguishing tokens at the end (‘E’) of entities and
those comprising single-token (‘S’) entities.

We next observed the differences in performance brought about by varying the set of word embeddings
(between pre-trained Common Crawl, Twitter and Wikipedia+Gigaword embeddings) used as input to
the neural network. It is slightly surprising that optimum performance was obtained with word embed-
dings learned based on Common Crawl rather than Twitter (Table 8). This, however, can be attributed
to Common Crawl’s much larger vocabulary (i.e., five times more than Wikipedia+Gigaword and twice
the size of the Twitter corpus). We plan to carry out more experiments (as part of future work) to further
investigate the effect of exploiting different pre-trained word embeddings.

Contrary to our expectations, embeddings generated by substituting OOEV words with placeholders
did not yield better performance compared to randomly initialised embeddings (see Table 9 below). It
is highly probable that replacing OOEV words with placeholders weakened the discriminative power
of CNNs, which take into consideration character-level features. Similarly, the string similarity-based
measures did not have a noticeable impact on performance as the affected words account for only a very
small percentage of the OOEV words.

We then evaluated the contribution of augmenting the sparse entity types in the training data with
weakly labelled named entities. As presented in Table 10, performance noticeably increased for all en-

GloVe Pretrained Vectors Precision Recall F-score
Twitter 59.83 51.22 55.19
Common Crawl 63.20 54.88 58.75
Wikipedia 2014 + Gigaword 5 58.46 46.34 51.70

Table 8: Comparison of performance based on different pre-trained word embeddings
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Embedding Strategy Precision Recall F-score
Randomly initialised embeddings (baseline) 63.20 54.88 58.75
Randomly initialised embeddings (words) + placeholder(all oth-
ers)

64.13 51.84 57.34

string sim (words, hashtags, punctuations) + placeholder(url,
@username, number)

62.28 51.11 56.14

string sim (words, hashtags) + placeholder(url, @username, num-
ber, punctuations)

62.92 50.86 56.25

Table 9: Performance of different embedding strategies for representing OOEV words

Entity Type Training Set only
Training Set + Weakly
Labelled entities for
sparse types

tvshow 44.44 44.44
product 40 41.38
musicartist 28.57 46.15
movie 0 16.67

Table 10: Effect on the F-scores after adding weakly labelled data to sparse entity types

tity types except in the case of tvshow, in which no improvement was obtained. The effect is especially
high for movie and musicartist—entity types for which the F-scores were previously zero. This demon-
strates that the incorporation of weakly labelled data in training the neural network can lead to significant
improvement with respect to sparse entity types.

Informed by the above results, we trained our final NER model on our training data partition aug-
mented with weakly labelled named entities, using: (1) the BIOES tagging scheme; (2) pre-trained
Common Crawl word embeddings; and (3) randomly initialised word embeddings for OOEV words.
Model training took two hours on an Nvidia M2050 GPU processor.

Underpinned by the final NER model, our system (“akora”) was applied on the shared task’s test data,
yielding an overall precision = 51.70, recall = 39.48, and F-score = 44.77. It ranked third amongst par-
ticipating systems (Strauss et al., 2016) as shown in Table 11. Details of the evaluation results according
to entity type are presented in Table 12.

Unfortunately, we have been unable to carry out a performance-wise comparison with the systems that
participated in the previous edition of the W-NUT NER task. Their performance results were reported
based on a data set that formed part of the development data set that we used to fine-tune our neural
network architecture’s hyperparameters and optimise our approach’s performance. Thus, reporting our
system’s results on the same data set would not have given a fair comparison.

A model for the W-NUT’s named entity segmentation task was trained in the same way as above, but
with the entity type labels removed from the training data. When applied on the official test data, this
model obtained an F-score of 59.05 (precision = 64.75, recall = 54.28).

System Name Precision Recall F-score
CambridgeLTL 60.77 46.07 52.41
Talos 58.51 38.12 46.16
akora 51.70 39.48 44.77
NTNU 53.19 32.13 40.06
ASU 40.58 37.58 39.02

Table 11: Performance of our NER system, akora, compared to other top-ranking W-NUT 2016 systems
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Entity Type Precision Recall F-score
company 67.11 32.53 43.82
facility 48.03 28.85 36.05
geo-loc 61.41 65.31 63.30
movie 10.00 2.94 4.55
musicartist 21.05 4.19 6.99
other 37.23 23.97 29.17
person 47.97 58.71 52.80
product 33.33 12.60 18.29
sportsteam 38.89 38.10 38.49
tvshow 10.00 3.03 4.65
Overall 51.70 39.48 44.77

Table 12: Named entity recognition performance on the official evaluation data set

5 Conclusion and Future Work

Our experiments have shown that taking advantage of weakly annotated data to alleviate data sparsity
of some named entity types resulted in increased performance in the respective entity types. In contrast,
mitigating OOEV words by using placeholders did not result in better performance. Future work includes
performing further error analysis by means of hidden layer visualisation to enable us to investigate repre-
sentations created at each layer. Moreover, Bayesian optimisation of parameters can be done as proposed
by Rasmussen (2006). Finally, considering the language drift inherent in social media content, looking
into word sense disambiguation may help improve performance.
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