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Abstract

In this paper, we present our approach for named entity recognition in Twitter messages that we
used in our participation in the Named Entity Recognition in Twitter shared task at the COL-
ING 2016 Workshop on Noisy User-generated text (WNUT). The main challenge that we aim
to tackle in our participation is the short, noisy and colloquial nature of tweets, which makes
named entity recognition in Twitter messages a challenging task. In particular, we investigate
an approach for dealing with this problem by enabling bidirectional long short-term memory
(LSTM) to automatically learn orthographic features without requiring feature engineering. In
comparison with other systems participating in the shared task, our system achieved the most
effective performance on both the ‘segmentation and categorisation’ and the ‘segmentation only’
sub-tasks.

1 Introduction

Named entity recognition (NER), which is one of the first and important stages in a natural language
processing (NLP) pipeline, is to identify mentions of entities (e.g. persons, locations and organisations)
within unstructured text. Traditionally, most of the effective NER approaches are based on machine
learning techniques, such as conditional random field (CRF), support vector machine (SVM) and per-
ceptrons (Lafferty et al., 2001; McCallum and Li, 2003; Settles, 2004; Luo et al., 2015; Ju et al., 2011;
Ratinov and Roth, 2009; Segura-Bedmar et al., 2015). For instance, Ratinov and Roth (2009) effec-
tively learned a perceptron model using features, including word classes induced using Brown cluster-
ing (Liang, 2005), and gazetteer extracted from Wikipedia.

Twitter NER is an NER task that aims to identify mentions of entities in Twitter messages (i.e.
tweets) (Baldwin et al., 2015; Ritter et al., 2011). Twitter NER is particularly challenging because of the
unique characteristics of tweets. For instance, tweets are typically short as the number of characters in a
particular tweet is restricted to 140; hence, the contextual information is limited. In addition, the use of
colloquial language makes it difficult for existing NER approaches a general domain, such as newswire
to be reused (Baldwin et al., 2015). Consequently, state-of-the-art NER software (e.g. Standford NER)
is less effective on Twitter NER tasks (Derczynski et al., 2015).

For our participation in the Named Entity Recognition in Twitter shared task at the COLING 2016
Workshop on Noisy User-generated text (WNUT) (Strauss et al., 2016), we aim to investigate a novel
approach that allows neural network to explicitly learn and leverage orthographic features. We focus on
orthographic features as they have shown to be effective and widely used in several NER systems. Impor-
tantly, orthographic features are used by majority of the systems (including the best system) participating
in the Twitter NER shared task at the 2015 WNUT workshop (Baldwin et al., 2015).
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Social Media Sentence Orthographic Sentence
14th MENA FOREX EXPO announced!! nncc CCCC CCCCC CCCC cccccccccpp
Nintendo 3DS released in north America Cccccccc nCC cccccccc cc cccc Ccccccc
END!! Cowboys 28, Eagles 24 CCCpp Ccccccc nnp Cccccc nn
@NutLims c u 2mor pCccCccc c c nccc
The Hobbit is on TV now!! Ccc Cccccc cc cc CC cccpp

Table 1: Examples of social media sentences and their corresponding orthographic sentence.

2 Related Work

Conditional random field (CRF) is one of the most effective approaches (Lafferty et al., 2001; McCallum
and Li, 2003; Settles, 2004) for NER, as it achieved state-of-the-art performances on several NER tasks,
such as CoNLL03 (Tjong Kim Sang and De Meulder, 2003) or Twitter NER (Baldwin et al., 2015). In
particular, CRF learns latent structures of an input sequence by using a undirected statistical graphical
model. Nevertheless, the performance of CRF mainly depends on hand-crafted features designed specif-
ically for a particular task or domain. Consequently, these hand-crafted features are difficult to develop
and maintain. Examples of hand-crafted features are orthographic features (Bikel et al., 1999), which
are based on patterns of characters contained in a given word. In this work, we investigate an approach
for could automatically inducing and leveraging orthographic features for named entity recognition for
Twitter messages.

Neural networks have recently shown to be effective for several NLP tasks, such as NER (Chiu and
Nichols, 2015), POS tagging (Huang et al., 2015), sentiment analysis (Limsopatham and Collier, 2016b)
and grounding (Limsopatham and Collier, 2016c; Limsopatham and Collier, 2015). For example, Col-
lobert et al. (2011) designed a feed-forward neural network that learned to identify entities in a sentence
by using contexts within a fixed number of surrounding words. Chiu and Nichols (2015) showed that
modelling both character and word embeddings within a neural network for NER further improve the
performance. Huang et al. (2015) introduced a more complex model based on bidirectional LSTM could
also take into account hand-crafted features. In this work, we investigate an application of our novel
approach (Limsopatham and Collier, 2016a) that enables bidirectional LSTM to automatically induce
orthographic features rather than feeding hand-crafted features into the model, when performing Twitter
NER.

3 Bidirectional LSTM for Twitter NER

In this section, we describe our end-to-end neural network approach for Twitter NER. In particular, our
approach consists of three main components: (1) orthographic sentence generator, (2) word representa-
tions as input vectors, (3) bidirectional LSTM.

3.1 Orthographic Sentence Generator

Our orthographic sentence generator creates an orthographic sentence, which contains orthographic pat-
tern of words in each input sentence. In particular, for a given social media sentence (e.g. ‘14th MENA
FOREX EXPO announced!!’), we generate an orthographic sentence (e.g. ‘nncc CCCC CCCCC CCCC
cccccccccpp’) by using a set of rules, where each of the upper-case characters, lower-case characters,
numbers and punctuations, are replaced with C, c, n and p, respectively. Examples of orthographic sen-
tences generated from social media sentences are shown in Table 1. This orthographic sentence allows
bidirectional LSTM to explicitly induce and leverage orthographic features automatically.

3.2 Input Vectors for Bidirectional LSTM

Our approach uses word representations extracted from both character and word levels. To do so, we
create vectors of character-based word representation (Section 3.2.1) and word representation (Sec-
tion 3.2.2) for both social media sentence and its orthographic sentence, as follows:
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Figure 1: Our CNN architecture for inducing word representation from a character level.

3.2.1 Character-based Word Representation

We use CNN to induce word representation from character embeddings of a given word, as shown in
Figure 1. Specifically, for a given word of length l characters, we create a word matrix M ∈ Rd×l as:

M =

 | | | |
x1 x2 x3 ... xl

| | | |

 (1)

where each column of M is the d-dimensional vector (i.e. character embedding) xi ∈ Rd of each char-
acter in the given word, which are initialised randomly.

To learn patterns of characters in a given word, a convolution operation with a filter w ∈ Rd×h is
applied to a window of h characters. In particular, a filter w is convolved over the sequence of characters
in the word matrix M, which results in a feature matrix C. Specifically, each feature ci in feature matrix
C is extracted from a window of words xi:i+h−1, as follows:

ci = f(w · xi:i+h−1 + b) (2)

where f is an activation function, e.g. sigmoid and tanh, and b ∈ R is a bias. In this work, we use 200
different filters with window size h = 3.

Then, we follow Collobert et al. (2011) and apply max pooling to capture the most important feature
from each filter. Indeed, max pooling takes the maximum value of each row in the matrix C:

cmax =

max(C1,:)
...

max(Cd,:)

 (3)

We use cmax vector as a character-based word representation in bidirectional LSTM (Section 3.3), as
it captures important features of a given word induced from a character level.

3.2.2 Word Representation

Existing studies, e.g. (Mikolov et al., 2013; Pennington et al., 2014), have shown that word embed-
dings induced from a large corpus could effectively capture semantic and syntactic information of words.
Hence, we also use pre-trained word embeddings as word representation. However, any randomly gen-
erated word embeddings can also be used.
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Figure 2: Our bidirectional LSTM for Twitter NER.

3.3 Bidirectional LSTM

In this work, we use bidirectional LSTM for modelling social media sentences, as existing work
(e.g. (Huang et al., 2015; Dyer et al., 2015; Dyer et al., 2015; Bengio et al., 1994)) has shown that
bidirectional LSTM could effectively deal with the variable lengths of sentences. In addition, it could
capture past (from the previous words) and future (from the next words) information effectively (Huang
et al., 2015; Dyer et al., 2015).

Our bidirectional LSTM for Twitter NER is shown in Figure 2. For a given a social media sentence and
its orthographic sentence, we firstly extract both character-based word representation and word vector
representation corresponding to each word in the social media sentence and the orthographic sentence, by
using the approaches previously described in Sections 3.2.1 and 3.2.2.1 Word representations associated
to the same words are then concatenated and sequentially fed into bidirectional LSTM to learn contextual
information of words in the sentence. At the output layer, we optimise the CRF log-likelihood, which
is the likelihood of labelling the whole sentence correctly by modelling the interactions between two
successive labels using the Viterbi algorithm, as suggested by Huang et al. (2015).

4 Experimental Setup

4.1 Datasets

The Twitter NER shared task datasets consist of training set (i.e. ‘2015 train’+‘2015 dev’), development
set (i.e. ‘2015 test’), additional set (i.e. additional ‘dev 2015’) and test set, respectively. The numbers
of tweets and tokens of each set are shown in Table 2. The shared task focuses on finding 10 types
of target entities, including company, facility, geo-location, movie, music-artist, other, person, product,
sport team and TV show. In particular, the shared task can be divided to to sub-tasks: ‘segmentation only’
and ‘segmentation and categorisation’. The former focuses only on finding the boundaries of entities;
meanwhile, the latter requires both the boundaries of entities and the correct categories of entity types.

4.2 Training Regime

To learn bidirectional LSTM, we use only the four datasets (see Table 2) provided by the workshop
organisers. In particular, we use the combination of training set and development set as training data, and
use additional set as validation data, when generating the test models. Note that we train two different
models for the two sub-tasks, i.e. ‘segmentation and categorisation’ (10-type) and ‘segmentation only’
(no-type).

1Note that we use separated set of word and character embeddings for the input sentence and the orthographic sentence.
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Training Set Development Set Additional Set Test Set
# tweets 2,349 1,000 419 3,850
# tokens 46,469 16,261 6,789 61,908
# entity tokens 2,462 1,128 439 5,955
# Company entity tokens 207 49 64 886
# Facility entity tokens 209 77 13 619
# Geo-loc entity tokens 325 158 62 1,101
# Movie entity tokens 80 30 5 82
# MusicArtist entity tokens 116 76 22 331
# Other entity tokens 545 229 91 1,140
# Person entity tokens 664 266 113 782
# Product entity tokens 177 158 15 746
# SportsTeam entity tokens 74 83 46 195
# TvShow entity tokens 65 2 8 73

Table 2: Statistics of the WNUT 2016 NER shared task datasets.

To tune hyper-parameters of the model, we optimise the performance on the development set when
training on the training set.

4.3 Embeddings

4.3.1 Word Embeddings
As discussed in Section 3.2.2, our approach uses word embeddings as inputs when learning an NER
model. For input sentences, we use pre-trained word embeddings of Godin et al. (2015)2, which consists
400-dimensional vectors of 3.04 million unique words induced from 400 million Twitter messages using
the Skip-gram model from the word2vec tool (Mikolov et al., 2013). For the words that do not exist in

the pre-trained embeddings, we use a vector of random values sampled from [−
√

3
dim , +

√
3

dim ] where
dim is the dimension of embeddings as suggested by He et al. (2015).

For orthographic sentences, we represent each word using a 200-dimensional randomly generated

vector, where each dimension is also uniformly sampled from [−
√

3
dim , +

√
3

dim ].

4.3.2 Character Embeddings
We use 30-dimensional character embeddings for representing each character when inducing the
character-based word representation (Equation (1) in Section 3.2.1) from both social media and ortho-
graphic sentences. The 30-dimensional character embeddings are initialised using uniform samples from

[−
√

3
dim , +

√
3

dim ]. Note that we have a separated embedding for each set of characters in the social
media and orthographic sentences.

4.4 Parameter Optimisation

We implement our bidirectional LSTM using the Theano library (Bergstra et al., 2010). Parameter opti-
misation is done by mini-batch stochastic gradient descent (SGD) where back-propagation is performed
using Adadelta update rule (Zeiler, 2012). The mini-batch size is 50. In addition, we allow the learner
to fine-tune both word and character embeddings when performing gradient updates during training.
Moreover, we follow Pascanu et al. (2013) and use a gradient clipping of 5.0, in order to reduce gradient
exploding.

To avoid overfitting, we apply L2 regularisation on the weight vectors and dropout (Srivastava et
al., 2014) on hidden units in all layers in our models. Dropout rate is set to 0.5. We also use early
stopping (Giles, 2001) based on the performance achieved on the development sets.

2Downloaded from http://www.fredericgodin.com/software.
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Approach
Segmentation and Categorisation Segmentation Only

(10-Type) (No-Type)
F1 Precision Recall F1 Precision Recall

Our approach 52.41 60.77 46.07 65.89 73.49 59.72
Talos 46.16 58.51 38.12 60.24 70.53 52.58
akora 44.77 51.70 39.48 59.05 64.75 54.28
NTNU 40.06 53.19 32.13 63.22 64.18 62.28
ASU 39.02 40.58 37.58 55.17 57.55 52.98
DeepNNNER 37.24 54.97 28.16 47.82 70.66 36.14
DeepER 36.95 45.40 31.15 51.38 63.17 43.31
hjpwhu 36.22 48.90 28.76 46.66 63.00 37.06
UQAM-NTL 29.82 40.73 23.52 44.30 53.21 37.95
LIOX 19.26 40.15 12.69 40.73 58.18 31.33

Table 3: Performances in terms of F1, precision and recall of our approach and the participating systems
on the ‘segmention and categorisation’ (10-type) and the ‘segmentation only’ (no-type) sub-tasks.

Type F1 Precision Recall
company 57.22 69.84 48.47
facility 42.42 51.70 35.97
geo-loc 72.61 75.21 70.18
movie 10.91 14.29 8.82
musicartist 9.48 26.83 5.76
other 31.66 49.45 23.29
person 58.99 52.06 68.05
product 20.12 36.96 13.82
sportsteam 52.41 53.15 51.70
tvshow 5.88 100.00 3.03
Overall 52.41 60.77 46.07

Table 4: Performances of our approach broken down by entity types.

5 Experimental Results

Next, we discuss the performance of our proposed approach. Table 3 compares the performances of
our approach with the other systems participating in the Twitter NER shared task at the 2016 WNUT
workshop, in terms of F1, precision and recall measures, on both the ‘segmentation and categorisation’
and ‘segmentation only’ sub-tasks.

From Table 3, we observed that our approach achieved the best F1 score for both sub-tasks. In par-
ticular, our approach attains F1 scores of 52.41 and 65.89 for the ‘segmentation and categorisation’ and
‘segmentation only’ sub-tasks, respectively. Importantly, for the ‘segmentation and categorisation’ sub-
task, our approach significantly outperformed the second best system (namely, Talos) by 6.2 F1 score.
Table 4 showed the performance of our approach broken down into entity types. Our approach performed
effectively on entities related to geo-location, person and company. Meanwhile, it was less effective on
the entity types tvshow, musicartist and movie.

6 Conclusions

In this paper, we describe our novel approach used in the Twitter NER shared task at the WNUT 2016
workshop. Our approach deals with the noisy and colloquial of tweets by leveraging word represen-
tations of input sentence and orthographic sentence in bidirectional LTSM. In particular, our approach
automatically induce and leverage orthographic features when performing NER. Importantly, we show
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that without requiring hand-crafted features, our approach is highly effective for the Twitter NER tasks,
as it achieves the best performance among all of the participating systems. For future work, we aim to
investigate approaches for enabling neural networks to automatically induce other hand-crafted features,
such as gazetteers.
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