University of Cambridge

We present a probabilistic clustering algorithm that can help Reddit users to find posts that discuss experiences similar to their own. This model is built upon the BERT Next Sentence Prediction model and reduces the time complexity for clustering all posts in a corpus from O(n^2) to O(n) with respect to the number of posts. We demonstrate that such probabilistic clustering can yield a performance better than baseline clustering methods based on Latent Dirichlet Allocation (Blei et al., 2003) and Word2Vec (Mikolov et al., 2013). Furthermore, there is a high degree of coherence between our probabilistic clustering and the exhaustive comparison O(n^2) algorithm in which the similarity between every pair of posts is found. This makes the use of the BERT Next Sentence Prediction model more practical for unsupervised clustering tasks due to the high runtime overhead of each BERT computation.