Dialect Text Normalization to Normative Standard Finnish

Niko Partanen, Mika Hämäläinen, Khalid Alnajjar
University of Helsinki


We compare different LSTMs and transformer models in terms of their effectiveness in normalizing dialectal Finnish into the normative standard Finnish. As dialect is the common way of communication for people online in Finnish, such a normalization is a necessary step to improve the accuracy of the existing Finnish NLP tools that are tailored for normative Finnish text. We work on a corpus consisting of dialectal data of 23 distinct Finnish dialects. The best functioning BRNN approach lowers the initial word error rate of the corpus from 52.89 to 5.73.