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Abstract

While recurrent neural networks (RNNs)
are widely used for text classification, they
demonstrate poor performance and slow
convergence when trained on long sequences.
When text is modeled as characters instead of
words, the longer sequences make RNNs a
poor choice. Convolutional neural networks
(CNNs), although somewhat less ubiquitous
than RNNs, have an internal structure more
appropriate for long-distance character
dependencies. To better understand how
CNNs and RNNs differ in handling long
sequences, we use them for text classification
tasks in several character-level social media
datasets. The CNN models vastly outperform
the RNN models in our experiments,
suggesting that CNNs are superior to RNNs at
learning to classify character-level data.

1 Text Classification with Sequences

Deep learning has transformed text classification
tasks by providing models that can fully account
for word order, whereas previous methods
required simplifications such as treating
documents as a “bag of words.” Recurrent
neural networks (RNNs) are attractive for their
ability to handle variable-length sequences and
have contributed huge improvements to machine
translation (Bahdanau et al., 2015; Cho et al.,
2014) and semantic modeling (Tai et al., 2015;
Socher et al., 2013), among many other areas.

Despite this widespread success, RNNs often
perform poorly on long sequences – common in
document classification – in which the model must
learn representations than span many timesteps.
If two informative tokens are far apart in a
document, a training gradient must maintain
information about one such token while being
backpropagated through the sequence of per-token
learned representations. Formulations like Long

Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) use gating mechanisms
designed to prevent such long-distance gradients
from vanishing (Hochreiter et al., 2001; Bengio
et al., 1994) by allowing constant error flow
through the network; yet empirical results find that
LSTMs fail to learn long-range dependencies.1

Convolutional Neural Networks (CNNs) differ
from RNNs in their internal structure, which
may make them more promising for modeling
long sequences. Whereas RNNs construct a
chain of one hidden state for every input token,
convolutional models can connect input tokens
with paths sublinear in the input sequence’s
length. CNNs have succeeded at text classification
(Kim, 2014; Zhang et al., 2015) and language
modeling (Kim et al., 2016). ByteNet, introduced
by Kalchbrenner et al. (2016), used dilated
convolutions to capture long-range dependencies
in character-level machine translation and achieve
fast training times. Despite these promising
results, prior work has not highlighted specific
tasks or domains in which CNNs are expected to
outperform RNNs.

We consider the task of classifying social media
posts; such user-generated text data contains
many unique words through misspellings, lexical
variation, and slang. Because a word-level
approach requires either an immense vocabulary
or a large proportion of out-of-vocabulary tokens
(Luong et al., 2014), we model the text one
character at a time. This choice allows models to
generalize across misspellings (“hello” vs. “helo”)
or phonetic or emphasized spelling (“hellloo”).
The downside of character-level data is the
dramatic increase in sequence length, which forces
the model to learn longer dependencies. In several
character-level datasets containing informal text,

1See Section 3.3 of Jozefowicz et al. (2016) and Section
4 of Sundermeyer et al. (2012) for two such results.
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Dataset Number
Instances

Number
Labels

Char
Vocab

Max
Length

SST 9.6k 2 97 160
SemEval ’17 62k 3 106 144

Yelp 120k 5 168 768
LID utf-8 43k 43 1365 128
LID Bytes 43k 43 198 288

Table 1: The datasets used for character based
sequence classification evaluations.

we show CNNs vastly outperform RNNs while
training several times faster.

2 Data

We consider the task of sequence classification, a
form of document classification where a sequence
model is used to produce a single label for a piece
of text. Following work that has demonstrated
the advantage of character based sequence models
for informal text (Vosoughi et al., 2016), we
treat the text as a sequence of characters. We
consider datasets formed from Twitter posts or
single sentences, since these are lengthy enough to
force the model to learn long-range dependencies,
yet short enough to train our RNN models quickly
enough on a single GPU. We set a maximum
length (divisible by 16) for each dataset, so as
to make the longest sequences more manageable
while maintaining most of the variability in
lengths. We truncate sequences longer than the
maximum length and pad shorter sequences with
a unique token. Table 1 summarizes our datasets.

SST Movie Reviews: The Stanford Sentiment
Treebank (SST) dataset (Socher et al., 2013)
contains 9.6k sentences extracted from a corpus
of rottentomatoes.com movie reviews,
labeled for sentiment by crowdsourced annotators.
We use the binary-classification version of the
dataset, discarding the 3-star neutral reviews. We
look only at entire sentences, and do not use
any of the shorter-phrase annotations or parse tree
data from the treebank. We use the published
splits from the dataset’s authors. The vocabulary
size is 96 characters. The average and median
sequence lengths were 100 and 103 characters. We
truncated all sequences at 160 characters, roughly
the 90th percentile of all lengths.

SemEval 2017: The task of Twitter sentiment
tagging from SemEval 2017 (Task 4, Subtask A)
provides 62k English tweets labeled for positive,
neutral, or negative sentiment (Rosenthal et al.,

2017). The training data is a compilation of
all previous SemEval datasets. We use the 4k
tweets from the 2013 competition’s test data
as our development set. We use the provided
train and test splits: 46k training and 12k test
examples. We preprocess by converting URLs and
‘@-mentions’ into special tokens. The training
data has a vocabulary of 106 characters. The
average and median sequence lengths were 103
and 110 characters. We truncated all sequences
at 144 characters, roughly the 95th percentile.

Yelp Reviews: The 2015 Yelp Dataset
Challenge2 provides a dataset of 4.7M reviews of
restaurants and businesses which contain text and
a one- to five-star rating. We randomly sample
120k reviews from the dataset and use 100k for
training, and 10k each for development and test
sets. We limit the character vocabulary to the
168 characters that appear at least 10 times. The
average and median sequence lengths were 613
and 437 characters. We truncated all sequences at
768 characters, roughly the 75th percentile.

Twitter LID: Twitter provides a multilingual
dataset3 for language identification (LID) of
tweets (Bergsma et al., 2012). We used the
recall-focused dataset but were only able to
download a subset of the original tweets and so
limited our experiments to the 43 languages for
which we could download at least 1000 tweets.
We preprocessed this dataset in two ways: using
the utf-8 encoding and using the raw byte strings.
For the utf-8 data, we limit the vocabulary to the
1365 characters that appear at least 10 times. The
average and median sequence lengths were 69 and
64 characters. We truncated utf-8 sequences at 128
characters, roughly the 95 percentile of lengths.
For the raw bytes data, we use the entire 198
character vocabulary. The average and median
sequence lengths were 118 and 102 characters.
We truncated byte sequences at 288 characters,
roughly the 95th percentile.

3 Models

We consider several recurrent and convolutional
models for character based sequence classification
tasks. For each model, we feed the learned
representation through two 256-dimensional

2https://www.yelp.com/dataset/challenge
3https://blog.twitter.com/2015/evaluating-language

-identification-performance
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fully-connected layers to produce an output
distribution over labels.

3.1 Recurrent Neural Networks

We consider both Long Short-Term Memory
(LSTM) networks (Hochreiter and Schmidhuber,
1997) and Gated Recurrent Unit (GRU) networks
(Chung et al., 2014), two variants of RNNs
that use gating to mitigate vanishing gradients.
In contrast to LSTMs, GRUs do not have an
output gate and thus have fewer parameters.
For both types of RNNs, we experimented
with unidirectional and bidirectional models, and
stacking up to a depth of three layers, with hidden
dimensions between 128 to 512. This gives us
model sizes from 250k to 14M parameters.

Attention mechanisms, which learn a weighted
average of the hidden states, have become popular
for sequence-to-sequence tasks (Bahdanau et al.,
2015). However, in our classification setting
attention means a weighted average across hidden
dimension. As a simpler attention baseline we use
max-pooling to reduce across the time dimension.

3.2 Convolutional Neural Networks

Recent interest in CNNs for NLP has resulted
in new model architectures. We explore several
of these in our comparison. Additionally,
initial experiments with average-pooling, and
other techniques to reduce convolutional outputs
across the time dimension, found that global
max-pooling worked best for all CNNs.

CNN-A We consider an extremely simple CNN
model which is just a stack of convolutional layers.
The model can be implemented in a few lines
of Tensorflow code. For hyperparameters, we
considered filter widths of 1, 2, and 3, with either
128 or 256 filters per convolution, and model
depths from 1 to 4 layers, with and without
layer normalization, and with and without relu
activations. Following (Yu and Koltun, 2015),
we double the convolutional dilation at each
subsequent layer. This gives us model sizes
ranging from 20k to 800k parameters.

CNN-B This is a popular CNN model
introduced by Kim (2014). At each layer of
the network, the model concatenates the outputs
of multiple convolutions with different filter
widths. Although this has been more widely
used in text classification tasks, it is still quite a
simple model to implement. We considered one-

and two-layer models, with local max-pooling
between the layers. The minimum filter width was
two and the maximum was either three or five.
We used either 128 or 256 filters per layer. This
gives us model sizes ranging from 100k to 1.8M
parameters.

ByteNet Kalchbrenner et al. (2016) introduced
a convolutional model for character-level machine
translation, using dilated convolutions (Yu
and Koltun, 2015) and residual multiplicative
blocks (Kalchbrenner et al., 2017). This is a
much more complicated convolutional model.
Their experiments demonstrate state-of-the-art
performance on character-level language
modeling with a Wikipedia dataset. We vary
the number of multiplicative blocks from two to
three and the number of dilated convolutions per
block from three to five. We used a filter width of
two and either 128 or 256 filters per convolution.
This gives us model sizes ranging from 200k to
6M parameters.

3.3 N-gram Baseline

As an alternative to our neural sequence models,
we also compare against character n-gram models
which do not take token order into account. We
train these with the sklearn SGDClassifier
using logistic loss and L2 regularization
(Pedregosa et al., 2011). We train models on
character 3-, 4-, and 5-grams, and consider
regularization parameters in the range from
0.0005 and 5. We pick the n-gram size and
regularization parameter on the dev set before
evaluating on the test set.

3.4 Model Training

We use cross-entropy loss as our training objective
for every model. Initial experiments led us to
fix the learning rate at 1e−4 and to use the
Adam optimizer (Kingma and Ba, 2014) with beta
parameters of 0.85 and 0.997. We embedded
character inputs before feeding them into the
CNN or RNN models, learning 512-dimensional
embeddings for the LID utf-8 dataset and
64-dimensional embeddings for all other datasets.

We trained each model for 200 epochs, with
early stopping based on a search for a stable
plateau in held-out dev accuracy. Specifically,
for each three-epoch window we calculate the
minimum dev accuracy in that window. Our
results in Table 2 report the test accuracy from the
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Dataset SST SemEval ’17 Yelp LID utf-8 LID Bytes
N-grams 79.8 59.5 64.6 88.5 90.6

RNN (GRU) 57.9 49.0 60.1 52.1 28.1
CNN-A 72.3 57.5 64.8 72.1 73.2
CNN-B 78.6 59.2 65.3 85.1 85.0
ByteNet 66.4 53.7 63.1 85.6 84.6

Past work 83.1a 66.4b ≈67.6c ≈92d ≈92d

Table 2: Test accuracy for each model architecture, with comparisons to n-gram models and past work. The best
RNN or CNN result is bolded. Past work: aBarnes et al. (2017) compares several models, achieving the best
result with a word-level LSTM. bYin et al. (2017) achieved the shared task’s highest accuracy using a recurrent
CNN (Lei et al., 2016) with an ensemble of word embeddings. cApproximate comparison; we did not compare on
the same splits. Tang et al. (2015) compares several models and found that a word-level Gated RNN performed
best. dApproximate comparison. Jaech et al. (2016) and Blodgett et al. (2017) report F1 scores of 91.2 and 92.8,
respectively, using an LSTM + CNN model.

middle epoch of the best three-epoch dev-accuracy
window.

Using the SemEval 2017 dataset we conducted
a grid search over the hyperparameter settings
listed above. For each RNN and CNN
architecture, we find the best hyperparameter
setting based on dev set accuracy. We then
perform a second grid search over dropout rates
from 0 to 0.4 in increments of 0.1. This resulted
in a total of 150 dev-set experiments: 45%
considering two recurrent architectures and the
remainder split between the three convolutional
architectures. We perform one test evaluation on
each dataset with the best hyperparameters of each
architecture.

4 Results

Table 2 shows our results for each model
architecture on each dataset. For the RNN
baseline, we include the GRU results, which
outperformed the LSTM in every experiment.
Even though we considered more hyperparameter
settings for the RNN models than for any of the
CNN architectures, and despite allowing for larger
RNN models, each convolutional architecture
significantly4 outperformed the recurrent model.
This supports the argument that CNN models are
more naturally suited than RNNs to handle the
lengthy sequences found in character datasets.

Our models do not achieve state-of-the-art
results, in part because we restrict ourselves
to character-level models and did not use any
of the domain-specific approaches common in

4 Using a two-proportion z-test, the worst CNN model is
better than the RNN with p < .0001.

evaluations such as SemEval (Rosenthal et al.,
2017). The past results we include in Table
2 all outperform our best sequence models.
However, many of those results depend upon
domain-specific optimizations which are mostly
independent of the underlying sequence model.

The simpler n-gram models outperform our
best sequence model on four of the five datasets
and are quite close to the best results reported
by past work. As character n-grams (especially
with n=5) are a close approximation to words,
this emphasizes the value of explicit word-level
features. Bag-of-words or “bag of character
ngrams” models naturally model the presence of
a specific word, whereas a character sequence
model must learn to pick that word out from its
surrounding characters. In our sentiment datasets,
it may be that specific words are very indicative
of the sequence labels, which could in part explain
the good performance of the n-gram models. This
suggests that models which combine word and
character features together may be particularly
well-suited to our domain of informal social media
texts (Joulin et al., 2017; Luong and Manning,
2016).

Our work has focused exclusively on the
domain of social media character sequences, but
the need to learn long-distance dependencies is
not exclusive to this domain. Modeling large
documents, while traditionally done at the word
level, can involve very long sequences. The
tradeoffs we explore between CNNs and RNNs
may reappear in such domains.

The two LID datasets demonstrate a clear
trade-off between sequence length and vocabulary
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size. When considering the data as raw bytes,
the sequences are nearly twice as long but have
a much smaller vocabulary size. While the CNN
models easily handle these byte sequences, the
RNN model performs terribly. This may be
because the convolutional filters are able to more
easily group nearby bytes to learn the character
mappings those bytes represent, or simply due to
the increased length.

A further practical benefit of the convolutional
models is their speed. Across all test datasets, an
average training epoch for the CNN-A architecture
was 10-20 times faster than that of the RNN
architecture. On the SST dataset with a sequence
length of 160, this difference was roughly 15
seconds per epoch; on the Yelp dataset with a
sequence length of 768, this difference was nearly
30 minutes per epoch.

5 Limitations and Future Work

We have presented an empirical comparison of
RNN and CNN model architectures for character
sequence classification. Our results indicate that in
this domain, convolutional models perform better
and train faster. Our experimental results do not,
however, give us much insight into which aspects
of CNN models contribute to higher classification
accuracy. Further experiments could help quantify
the benefit of dilated convolutions or of wide
filter widths, and understand the variations in
performance between our CNN architectures.

Our empirical comparison is also limited in
focus to informal social media texts. We did
not consider any sequences that are either very
short (a few words) or are very long (entire
documents). We don’t know whether our decision
to focus on sequences with lengths between
144 and 768 tokens is partially responsible for
the trends we report. Aside from our LID
experiments, we only consider English-language
data with limited character sets and explicit word
segmentation. Additional experiments could also
explore whether the performance gap between
RNNs and CNNs persists in larger datasets with
millions of examples.

Acknowledgments

This work was in part supported by the National
Institute of General Medical Sciences under grant
number 5R01GM114771.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2015. Neural machine translation by jointly
learning to align and translate. In International
Conference on Learning Representations.

Jeremy Barnes, Roman Klinger, and Sabine Schulte
im Walde. 2017. Assessing state-of-the-art
sentiment models on state-of-the-art sentiment
datasets. In WASSA. pages 2–12.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with
gradient descent is difficult. IEEE transactions on
neural networks 5(2):157–166.

Shane Bergsma, Paul McNamee, Mossaab Bagdouri,
Clayton Fink, and Theresa Wilson. 2012. Language
identification for creating language-specific twitter
collections. In Proceedings of the second workshop
on language in social media. Association for
Computational Linguistics, pages 65–74.

Su Lin Blodgett, Johnny Wei, and Brendan O’Connor.
2017. A dataset and classifier for recognizing social
media english. In W-NUT . pages 56–61.

Kyunghyun Cho, Bart Van Merriënboer, Caglar
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